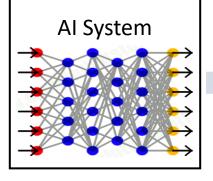


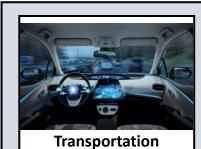
Explainable Artificial Intelligence (XAI)

David Gunning DARPA/I2O

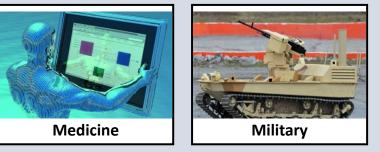
The Need for Explainable AI



- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand



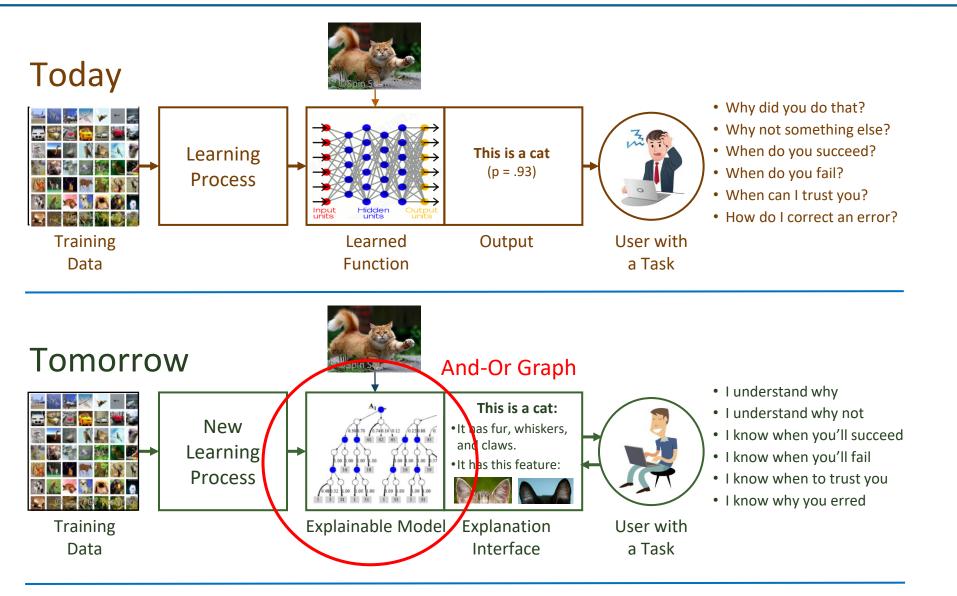
Security

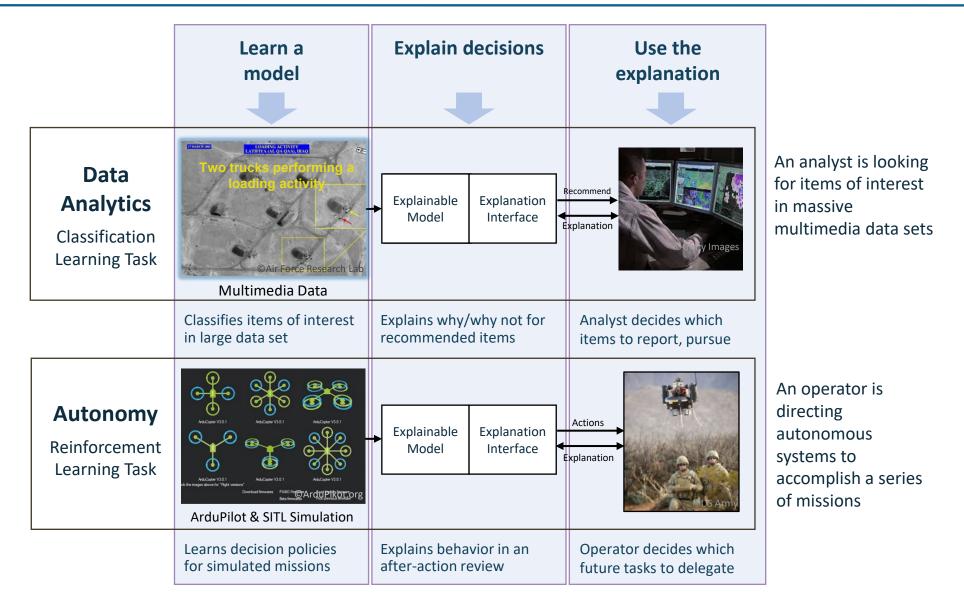


- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

- The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited by the machine's inability to explain its decisions and actions to users.
- Explainable AI will be essential if users are to understand, appropriately trust, and effectively manage this incoming generation of artificially intelligent partners.

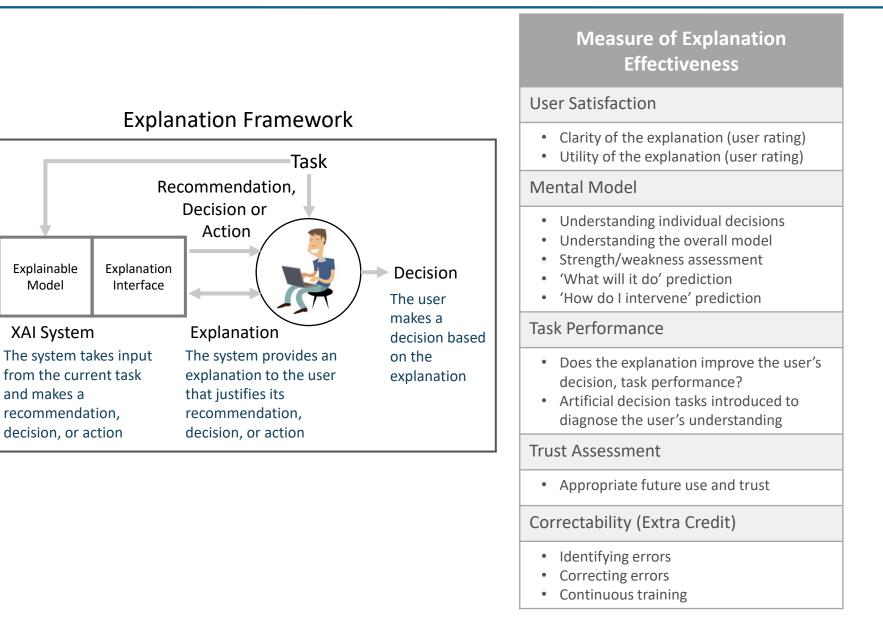
XAI In the News

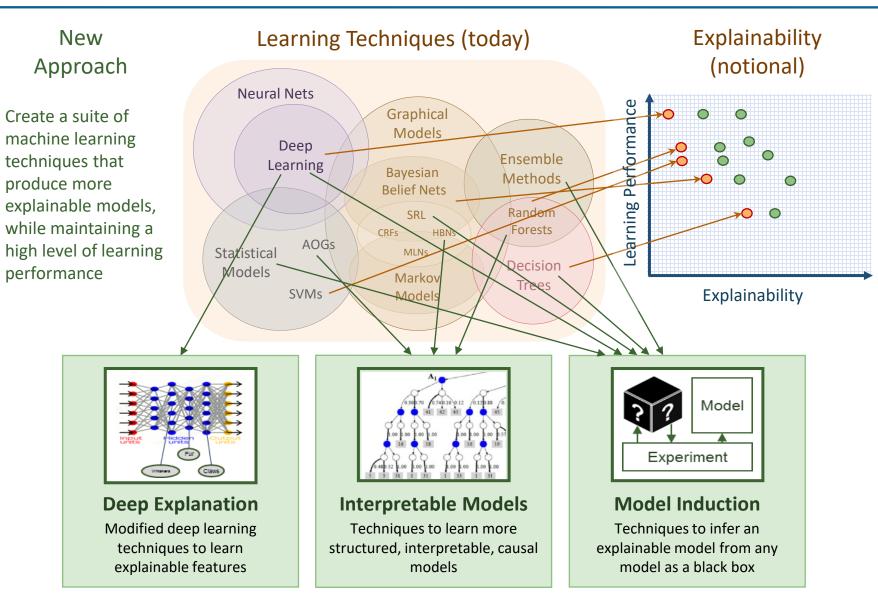


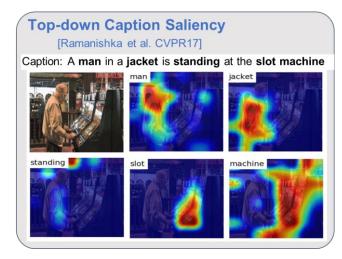


- XAI will create a suite of machine learning techniques that
 - Produce more explainable models, while maintaining a high level of learning performance (e.g., prediction accuracy)
 - Enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners

Performance vs. Explainability

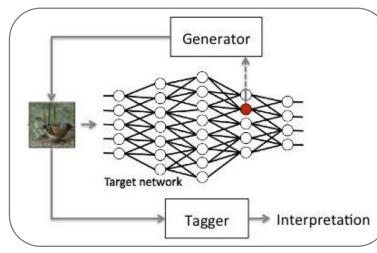




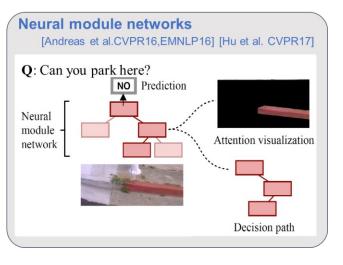


Attention Mechanisms

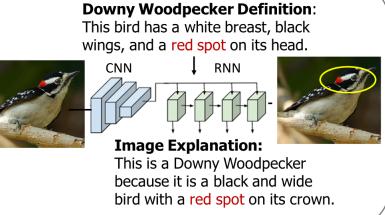
Feature Identification



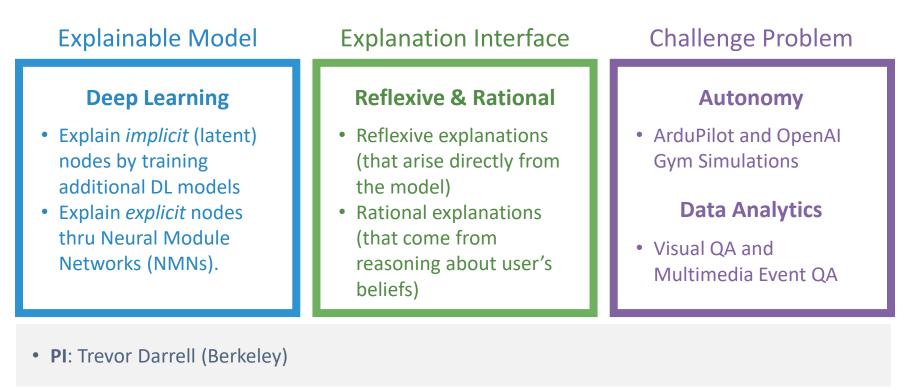
Modular Networks



Learn to Explain



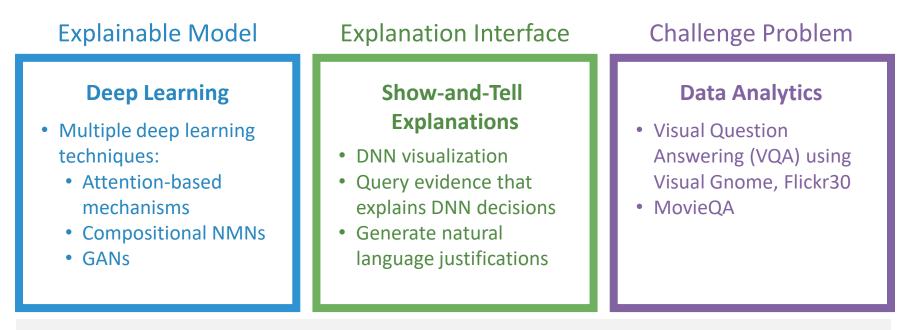
Deeply Explainable Artificial Intelligence



- Pieter Abbeel (Berkeley)
- Tom Griffiths (Berkeley)
- Kate Saenko (BU)
- Zeynep Akata (U. Amsterdam)
- Dan Klein (Berkeley)
- John Canny (Berkeley)
- Anca Dragan (Berkeley)

• Anthony Hoogs (Kitware)

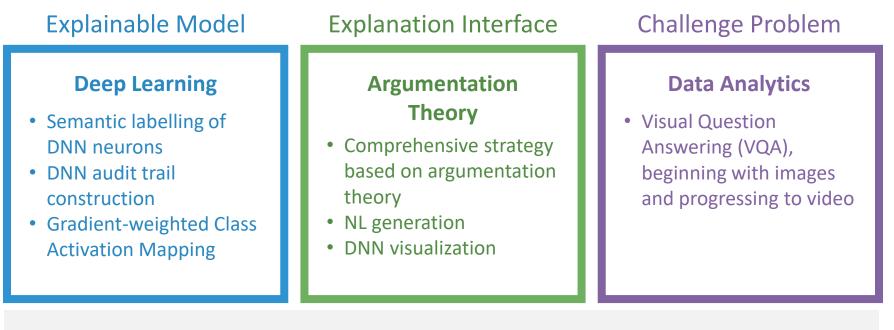
DARE: Deep Attention-based Representations for Explanation



- PIs: Giedrius Burachas (SRI), Mohamed Amer (SRI)
- Shalini Ghosh (SRI)
- Avi Ziskind (SRI)
- Michael Wessel (SRI)
- Richard R. Zemel (U. Toronto)
- Sanja Fidler (U. Toronto)
- David Duvenaud (U. Toronto)
- Graham Taylor (U. Guelph)

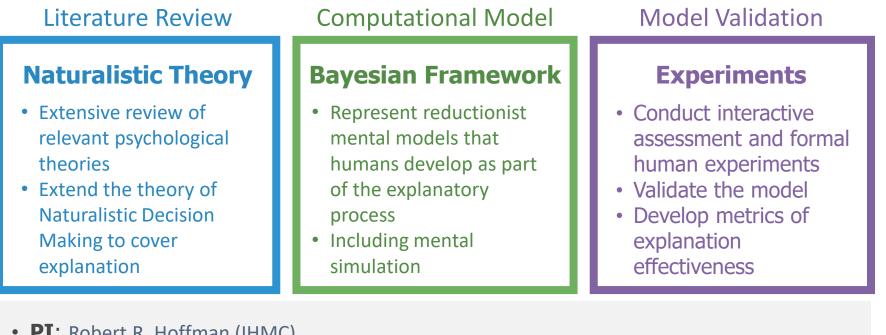
• Jürgen Schulze (UCSD)

EQUAS: Explainable QUestion Answering System



- PI: William Ferguson (Raytheon BBN)
- Antonio Torralba (MIT)
- Ray Mooney (UT Austin)
- Devi Parikh (GA Tech)
- Dhruv Batra (GA Tech)

Naturalistic Decision Making Foundations of Explainable AI



- **PI:** Robert R. Hoffman (IHMC)
- Gary Klein (MacroCognition)
- Shane T. Mueller (Michigan Tech)
- William J. Clancey (IHMC)
- COL Timothy M. Cullen (SAASS)

- Jordan Litman (IHMC Psychometrician)
- Simon Attfield (Middlesex University-London)
- Peter Pirolli (IHMC)

Tractable Probabilistic Logic Models: A New, Deep Explainable Representation

Explainable Model

Explanation Interface

Challenge Problem

Probabilistic Logic

 Tractable Probabilistic Logic Models (TPLMs) – an important class of (non-deep learning) interpretable models

Probabilistic Decision Diagrams

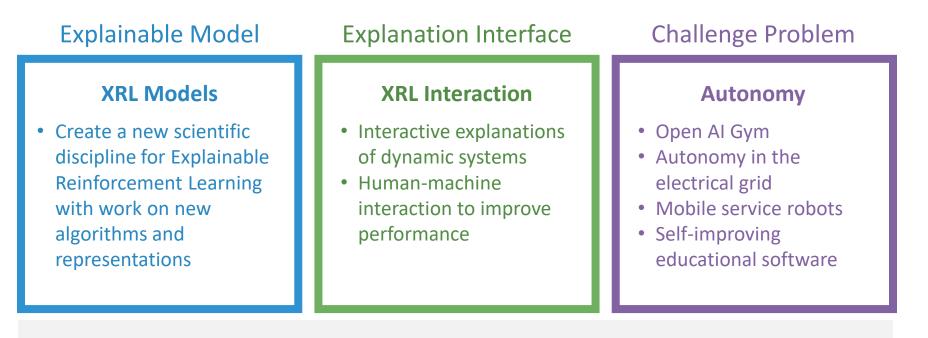
 Enables users to explore and correct the underlying model as well as add background knowledge

Data Analytics

- Infer activities in multimodal data (video and text)
- Using the Wetlab (biology) and TACoS (cooking) datasets

- **PI**: Vibhav Gogate (UT Dallas)
- Adnan Darwiche (UCLA)
- Guy Van Den Broeck (UCLA)
- Nicholas Ruozzi (UT Dallas)
- Eric Ragan (Texas A&M)
- Parag Singla (IIT-Delhi)

XRL: Explainable Reinforcement Learning for AI Autonomy



- **PI**: Geoff Gordon (CMU)
- Zico Kolter (CMU)
- Pradeep Ravikumar (CMU)
- Manuela Veloso (CMU)
- Emma Brunskill (Stanford)

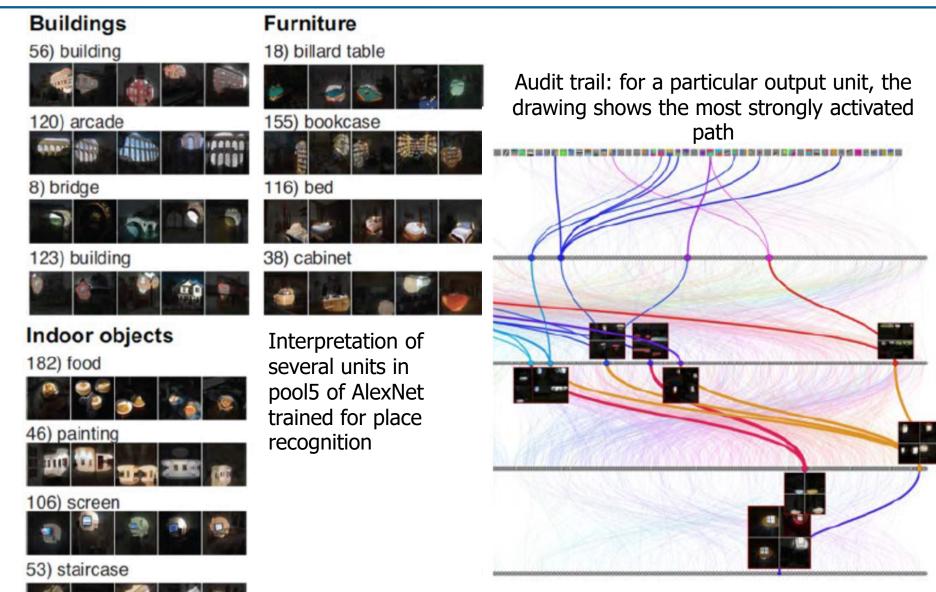
Transforming Deep Learning to Harness the Interpretability of Shallow Models: An Interactive End-to-End System

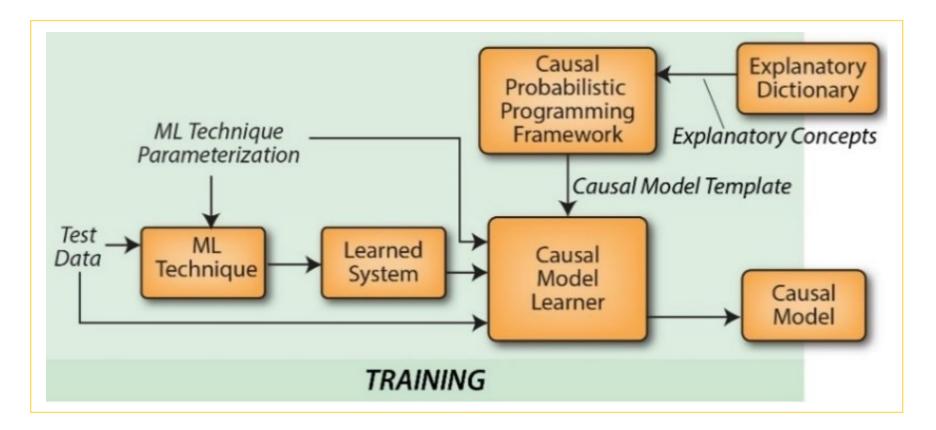
Explainable Model	Explanation Interface	Challenge Problem
Mimic Learning • Develop a mimic learning framework that combines deep learning models for prediction and shallow models for explanations	Interactive Visualization • Interactive visualization over multiple views, using heat maps & topic modeling clusters to show predictive features	 Data Analytics Multiple tasks using data from Twitter, Facebook, ImageNet, UCI, NIST and Kaggle Metrics for explanation effectiveness

- PI: Xia Hu (Texas A&M)
- Shuiwang Ji (Wash. State)

• Eric Ragan (Texas A&M)

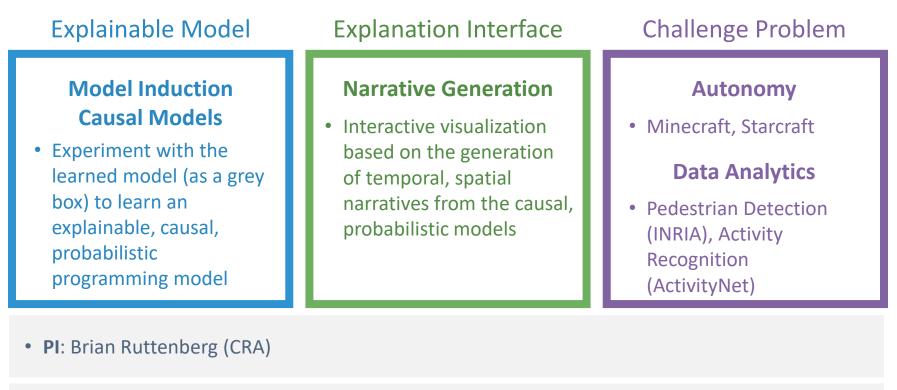
Network Dissection Quantifying Interpretability of Deep Representations (MIT)



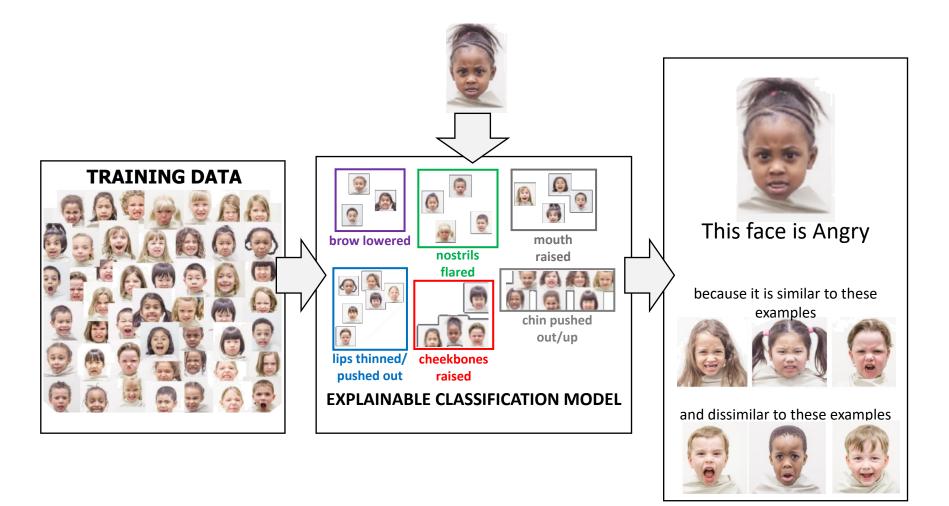


<u>Causal Model Induction</u>: Experiment with the learned model (as a grey box) to learn an explainable, causal, probabilistic programming model

CAMEL: Causal Models to Explain Learning

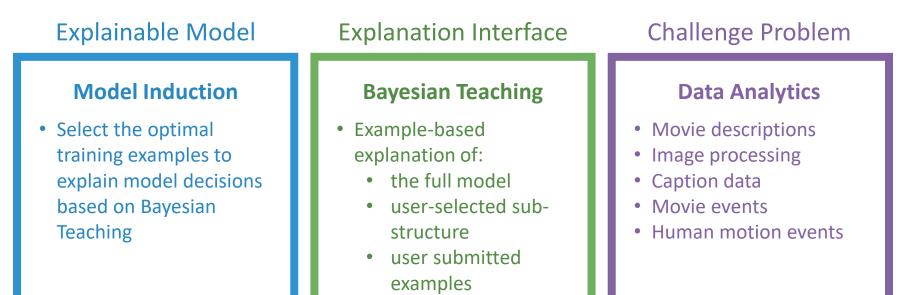


- Avi Pfeffer (CRA)
- David Jensen (U. Mass)
- Michael Littman (Brown)
- James Niehaus (CRA)
- Emilie Roth (Roth Cognitive Engineering
- Joe Gorman(CRA)
- James Tittle (CRA)



BAYESIAN TEACHING for optimal selection of examples for machine explanation

Model Explanation by Optimal Selection of Teaching Examples

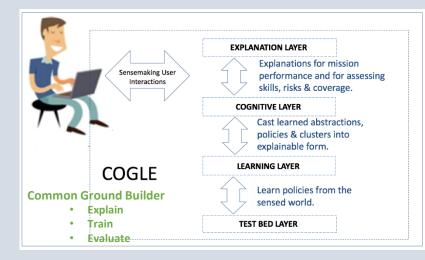


- PI: Patrick Shafto (Rutgers)
- Scott Cheng-Hsin Yang (Rutgers)

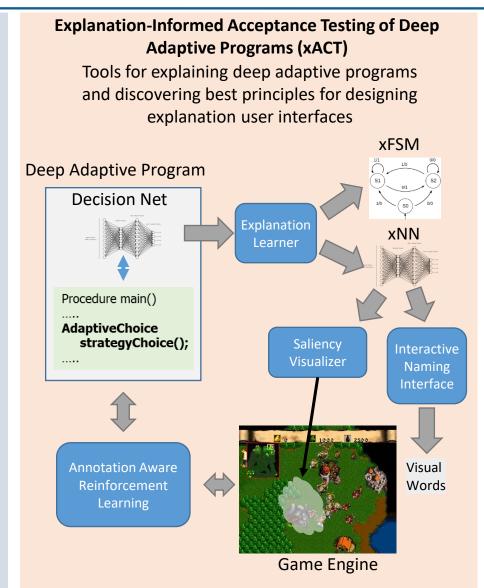
Autonomy (PARC, OSU)

Common Ground Learning and Explanation (COGLE)

An interactive sensemaking system to explain the learned performance capabilities of a UAS flying in an ArduPilot simulation testbed

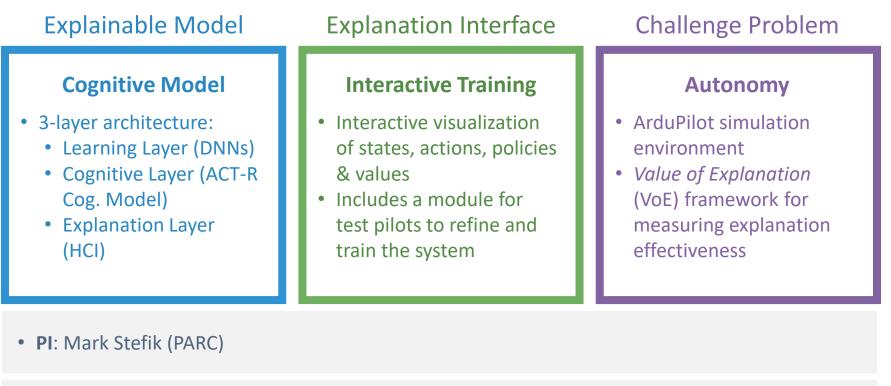


Series 1. Primitives: Navigating with Constraints and Lookahead	7
Lesson 1.1: Taking off	7
Lesson 1.2: Taking off and Landing	9
Lesson 1.3: Reconnaissance Over a Point (3 Months)	
Lesson 1.4: Looking Ahead to Avoid Crashing into Mountains	
Lesson 1.5: Choosing a Safe Descent Approach for Landing	15
Lesson 1.6: Provisioning a Hiker (6 months)	17
Series 2. Behaviors: Managing Competing Goals and Foraging	
Lesson 2.1: Provisioning a Hiker in a Box Canyon (opt)	
Lesson 2.2: Taking an Inventory of a Region and Refueling (opt)	
Lesson 2.3: Foraging Around a Point for a Hiker (opt)	
Lesson 2.4: Foraging Around a Point with an Interfering Obstacle	
Series 3. Missions: Harder Missions and Heavy Testing	
Lesson 3.1: Double Hiker Jeopardy (9 months)	
Lesson 3.2: Bear on the Runway	
Lesson 3.3: Auto-Generated Missions with Testing (12 months)	



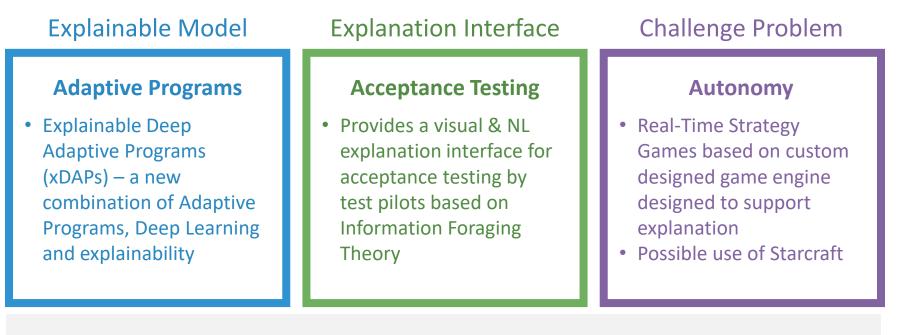
Robotics Curriculum

COGLE: Common Ground Learning and Explanation



- Sricharan Kumar (PARC)
- Honglak Lee (U. Mich.)
- Subramanian Ramamoorthy (U. Edinburgh)
- Christian Lebiere (CMU)
- John Anderson (CMU)
- Robert Thomson (USMA)
- Michael Youngblood (PARC)

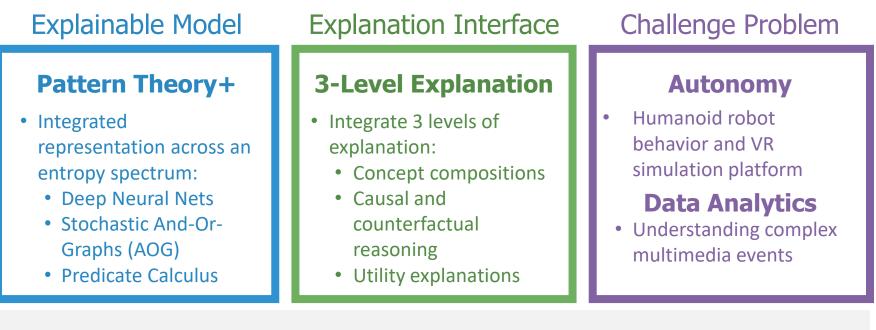
xACT: Explanation-Informed Acceptance Testing of Deep Adaptive Programs



- PI: Alan Fern (OSU)
- Tom Dietterich (OSU)
- Fuxin Li (OSU)
- Prasad Tadepalli (OSU)
- Weng-Keen Wong (OSU)

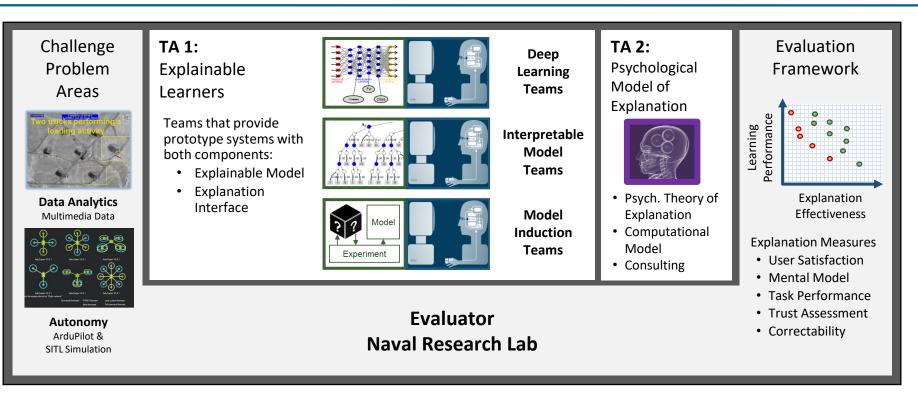
- Margaret Burnett (OSU)
- Martin Erwig (OSU)
- Liang Huang (OSU)

Learning and Communicating Explainable Representations for Analytics and Autonomy

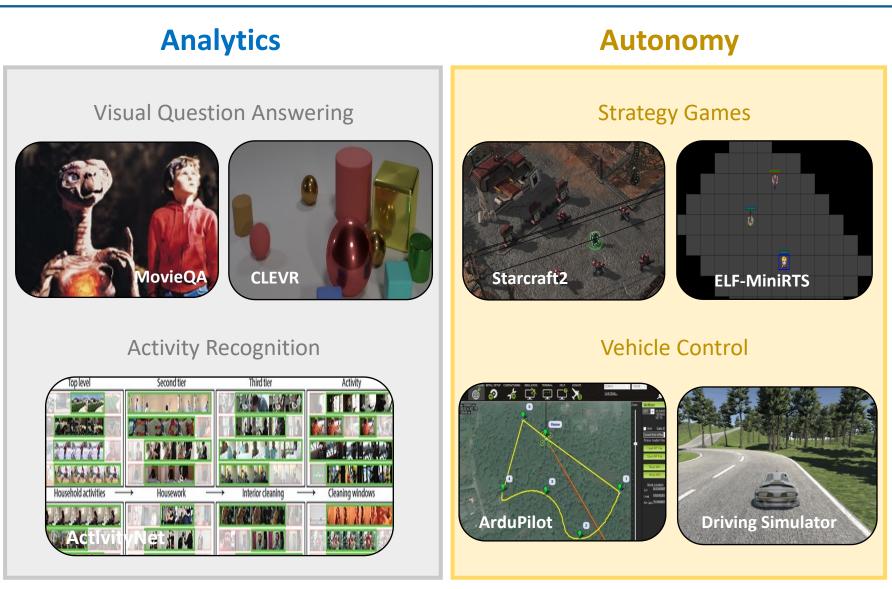


- **PI:** Song-Chun Zhu (UCLA)
- Ying Nian Wu (UCLA)
- Sinisa Todorovic (OSU)
- Joyce Chai (Michigan State)

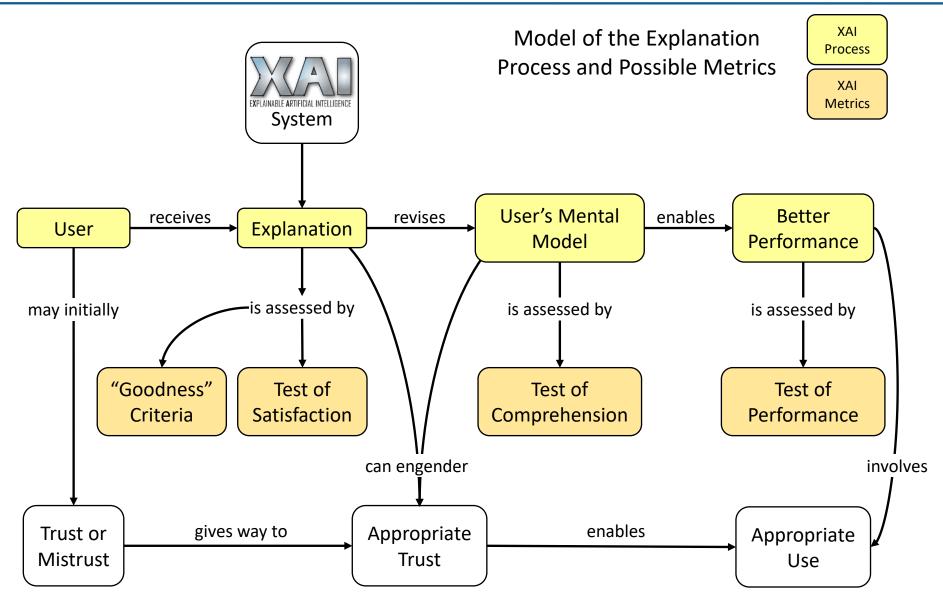
XAI Program Structure



- TA1: Explainable Learners
 - Multiple TA1 teams will develop prototype explainable learning systems that include both an explainable model and an explanation interface
- TA2: Psychological Model of Explanation
 - At least one TA2 team will summarize current psychological theories of explanation and develop a computational model of explanation from those theories



IHMC/MacroCognition/Michigan Tech Psychological Models of Explanation

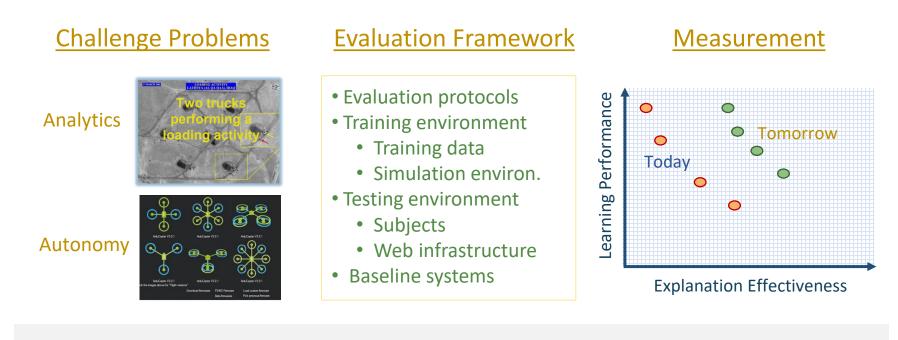


Schedule and Milestones

	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR	2018 May Jun Jul Aug Sep Oct	NOV DEC JAN FEB MAR APR	2019 May Jun Jul Aug Sep Oct	NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	SEP OCT NOV DEC JAN FEB MAR APR MAY
	PHASE 1: Technology Demo	PHASE 2: Comparative Evaluations				
Evaluator	Define Evaluation Framework	Prep for Eval Eval 1 1	Analyze Results	or Eval 2 Eval 2	Analyze Results Prep for Eval 3	Eval Analyze Results & 3 Accept Toolkits
TA 1	Develop & Demonstrate Explainab (against proposed problem		Refine & Test Ex Learner (against common	5 EVal	Refine & Test Explainable Learners (against common problems)	Eval Deliver Software 3 Toolkits
TA 2	Summarize Current Psychological Theories of Explanation	Develop Comput Explar		C	Refine & Test Computational Model	Deliver Computational Model
Meetings	KickOff Progress Report Tecl	Demos	Eval 1 Results		Eval 2 Results	Final

- Technical Area 1 (Explainable Learners) Milestones:
 - Demonstrate the explainable learners against problems proposed by the developers (Phase 1)
 - Demonstrate the explainable learners against common problems (Phase 2)
 - Deliver software libraries and toolkits (at the end of Phase 2)
- Technical Area 2 (Psychology of Explanation) Milestones:
 - Deliver an interim report on psychological theories (after 6 months during Phase 1)
 - Deliver a final report on psychological theories (after 12 months, during Phase 1)
 - Deliver a computational model of explanation (after 24 months, during Phase 2)
 - Deliver the computational model software (at the end of Phase 2)

XAI Evaluation



- PI: David Aha
- Justin Karneeb (Knexus)
- Matt Molineaux (Knexus)
- Leslie Smith (NRL)

• Mike Pazzani (UC Riverside)

Phase I: Attention Map

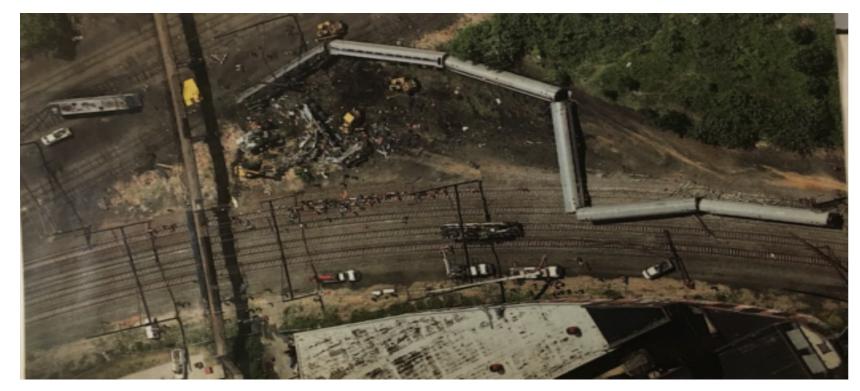
1. Motivation: Being able to explain is crucial for gaining trust

Explanation is crucial for:

- System Safety
- Debugging
- Causality
- Justice
- Public Relations

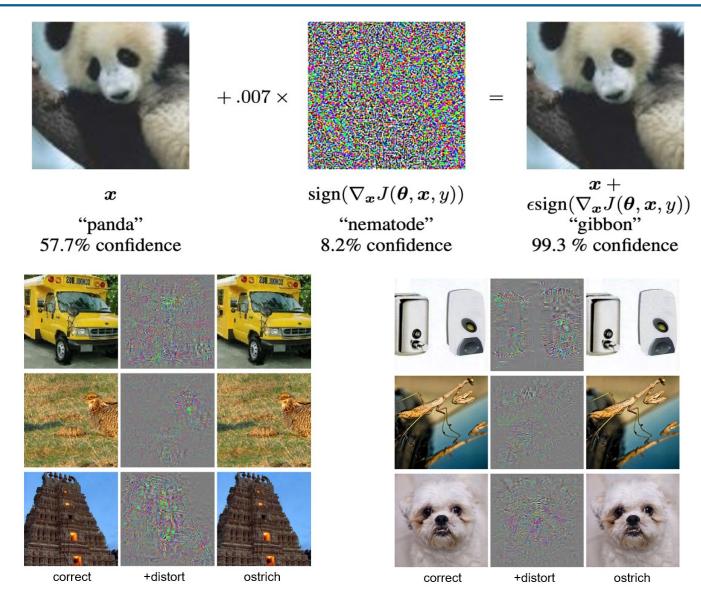
Justified Trust :

Knowing when a person system works and when does not !



Example: In 2015, An Amtrak Passenger Train 188 had reached a speed of 106 mph at a curve with speed limit 50 mph and derailed. 8 died and 85 were sent to hospital. The public perspective on the train driver drastically changed from The driver being "absolutely guilty" to "not really his fault" after explaining them the causes.

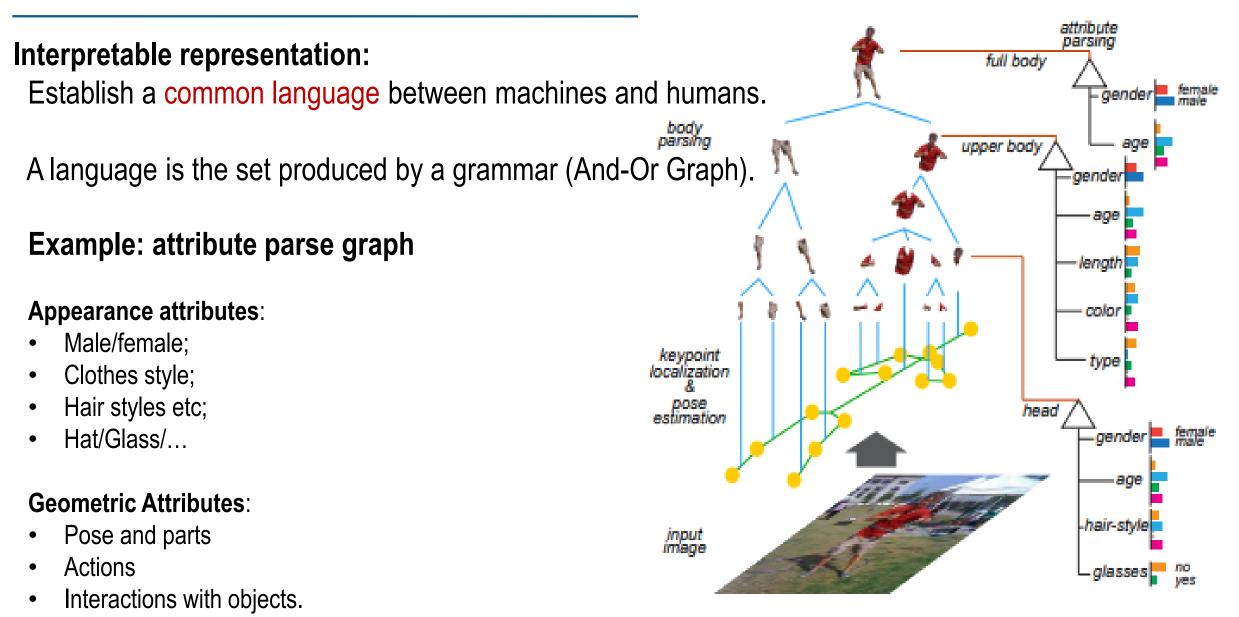
A crisis for deep models: crucial applications cannot trust DNN models



[1] Szegedy, Christian, et al. "Intriguing properties of neural networks." ICLR 2014.

[2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015.

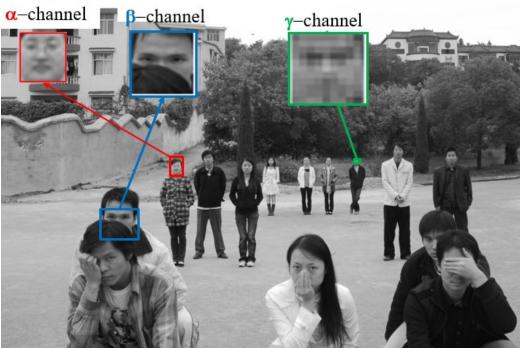
2. Concepts: What are Interpretation and Explanation?



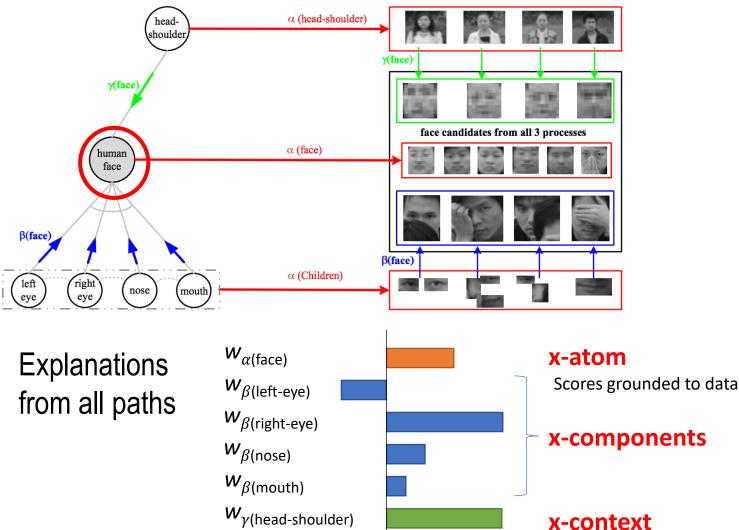
Seyoung Park, Xiaohan Nie, Brandon Rothrock, Song-Chun Zhu

Explanation is built on an interpretable representation

Example: Why is it a Human Face?

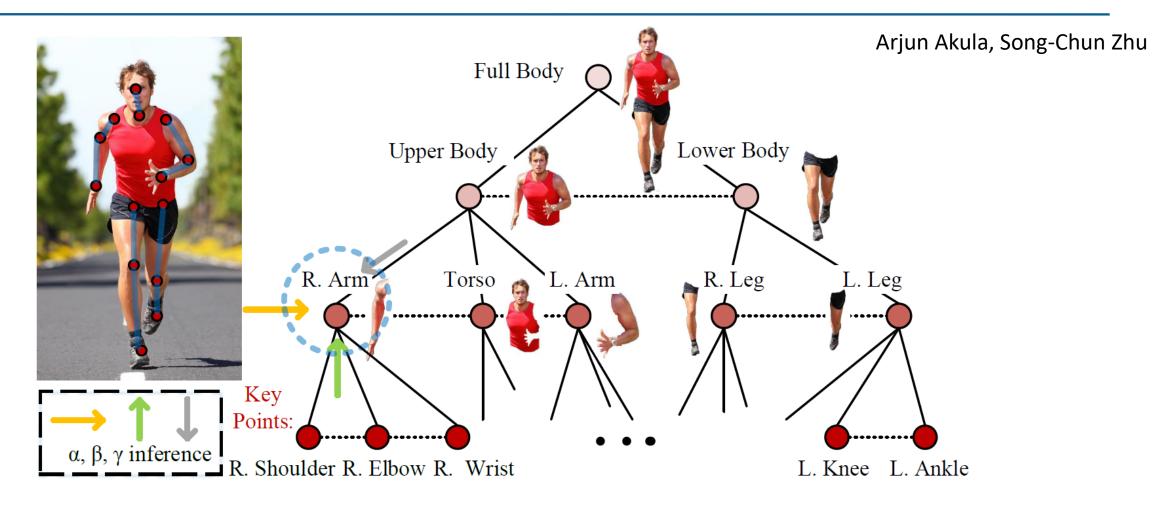


α - β - γ pathways for recognition.



Tianfu Wu, Song-Chun Zhu

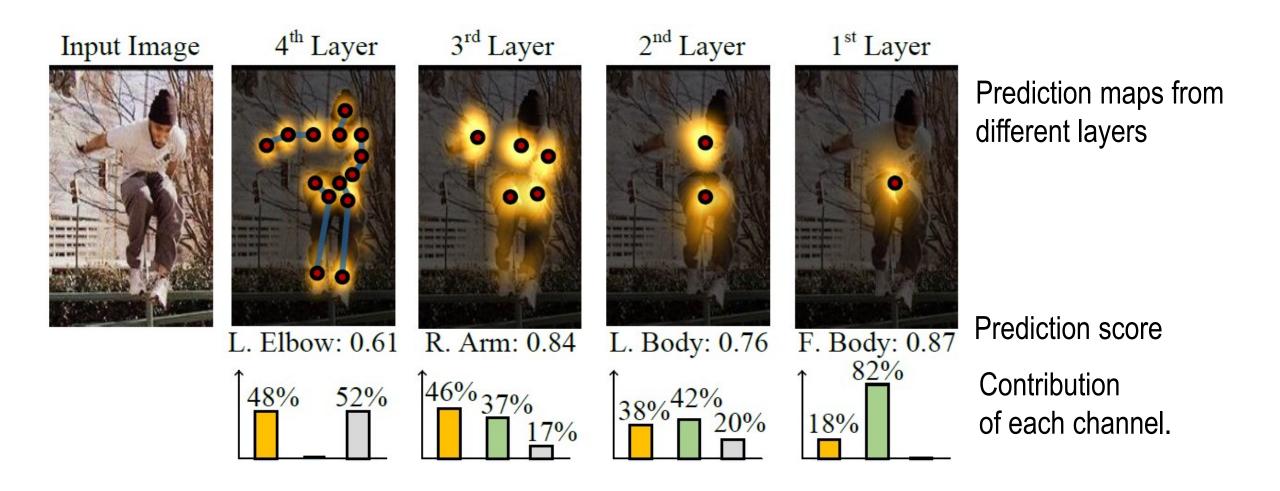
Recursive α - β - γ channels in a parse graph



Interpretability = entropy (prob.(parse graph | input image)).

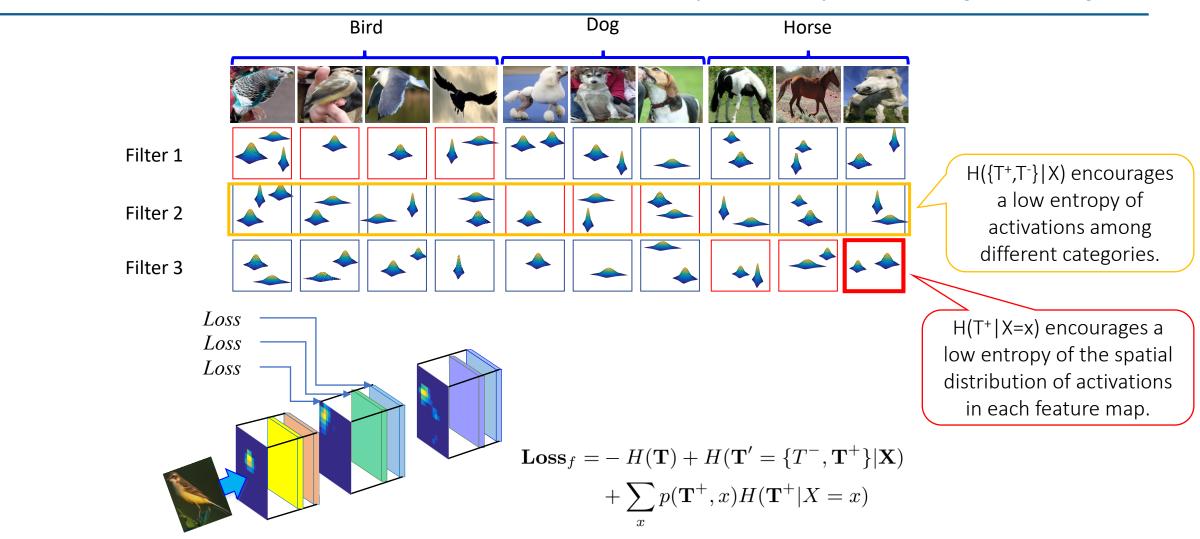
For most daily images, we usually perceive only 1 interpretation. Otherwise we are confused all the time. This is because we stop growing the parse graph when the entropy is too high, as it becomes speculation

Example: Calculating the contributions of α - β - γ channels

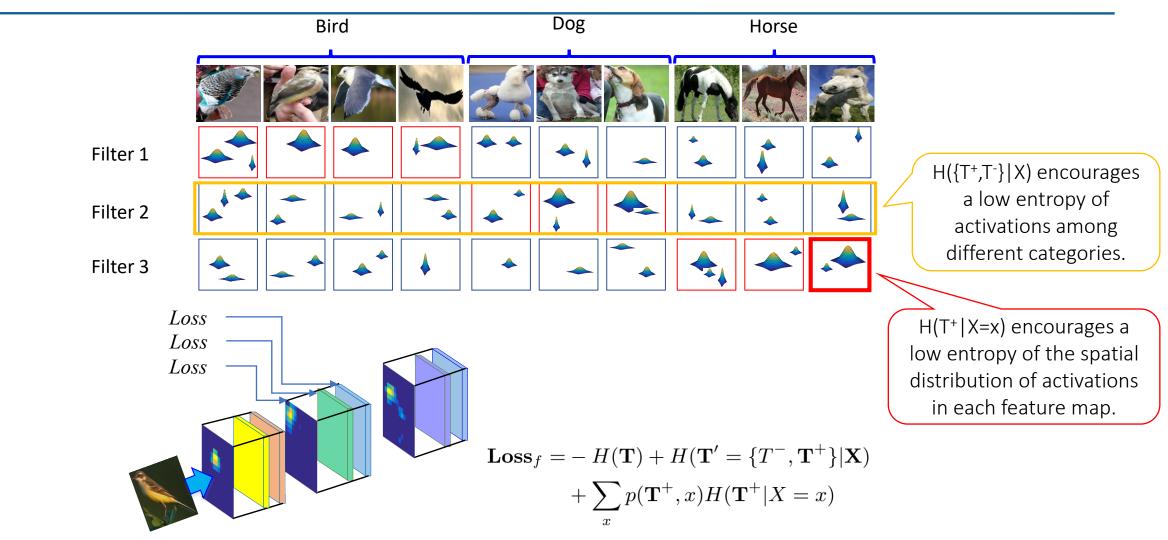


Wenguang Wang, Song-Chun Zhu

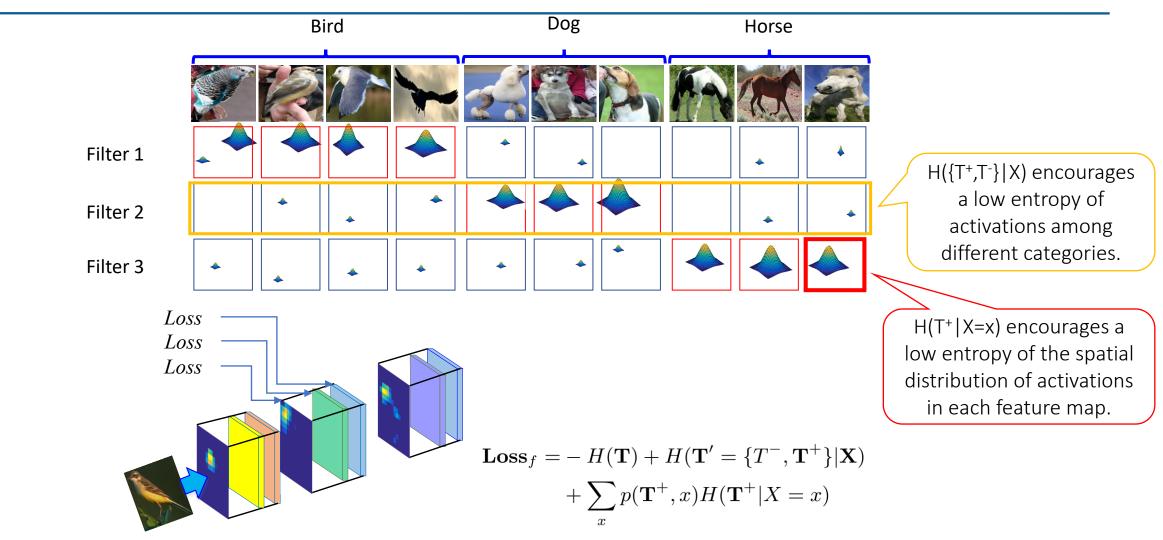
DNN is not interpretable, as its neurons have "many-to-many" mapping to categories.



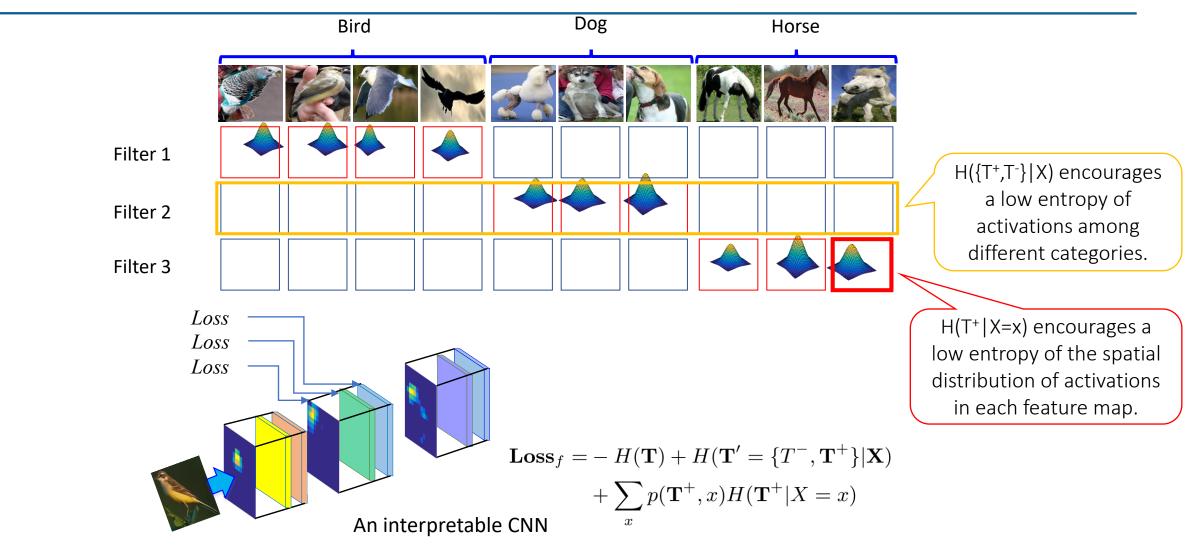
Adding regularization term to minimize the entropy of interpretation



Adding regularization term to minimize the entropy of interpretation

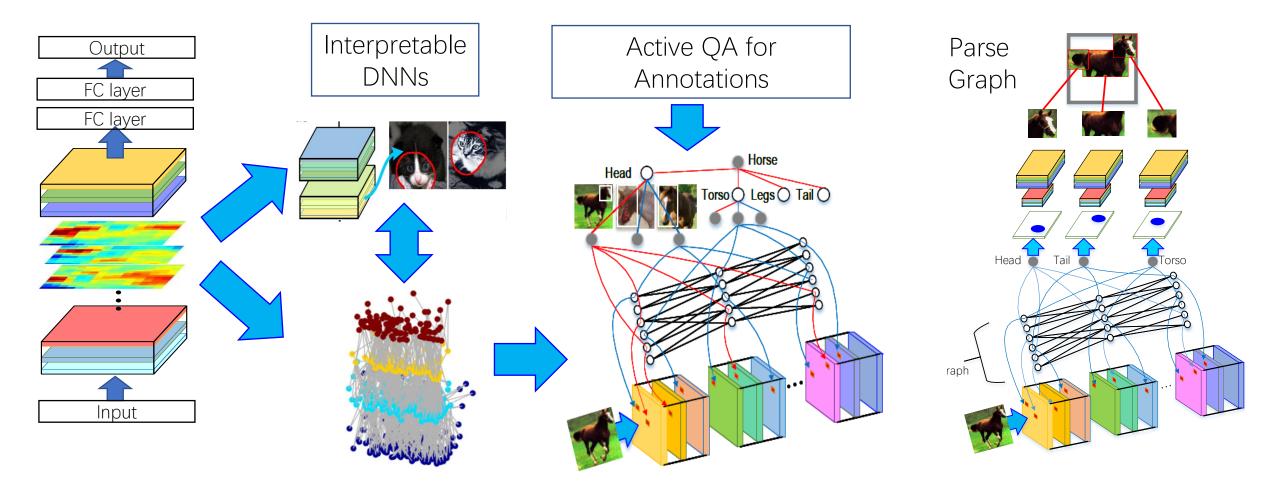


Adding regularization term to minimize the entropy of interpretation !

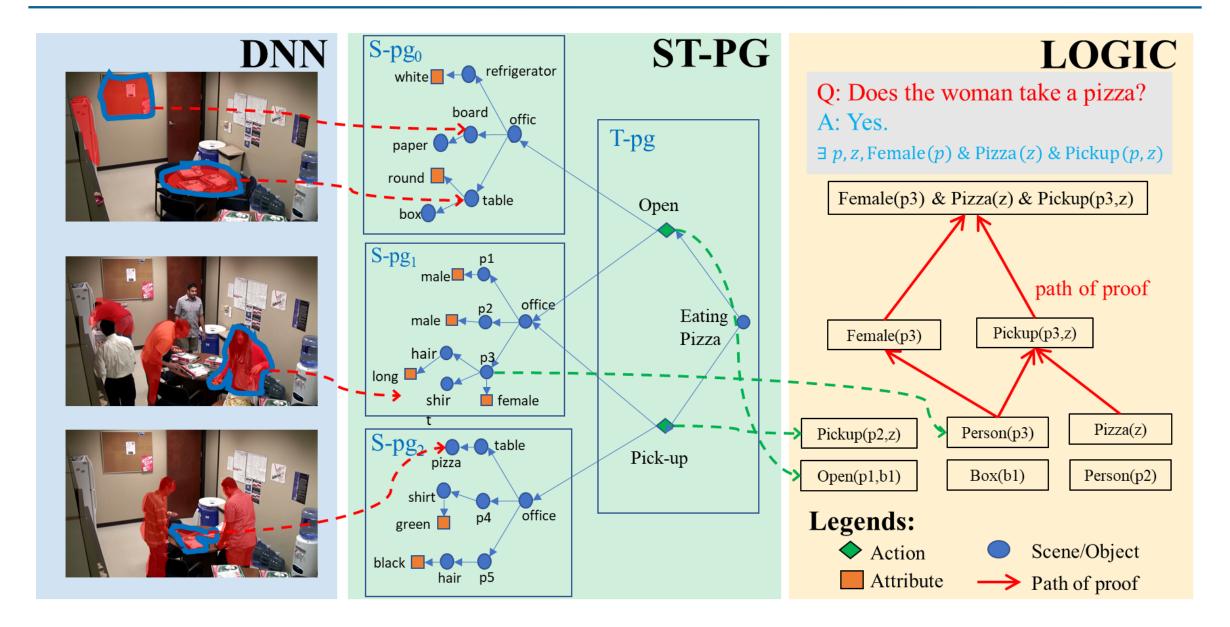


Disentangle DNN neurons into an Interpretable DNNs

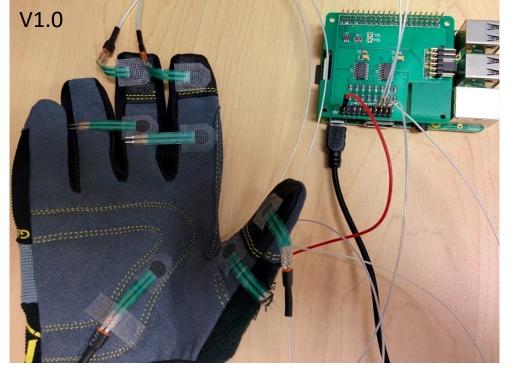
Disentangle DNN neurons, and map them to nodes in parse graph.



Close the Loop: DNN – AOG – LOGIC

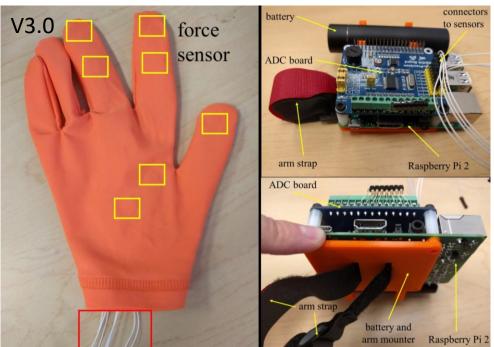


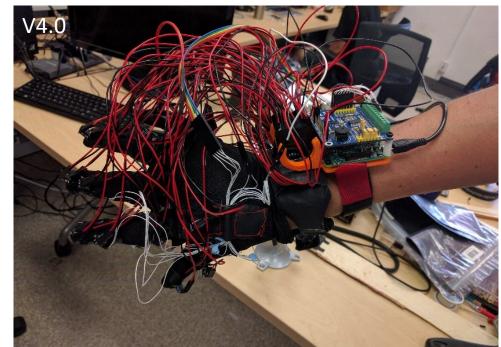
Phase II: Enhancing Trust



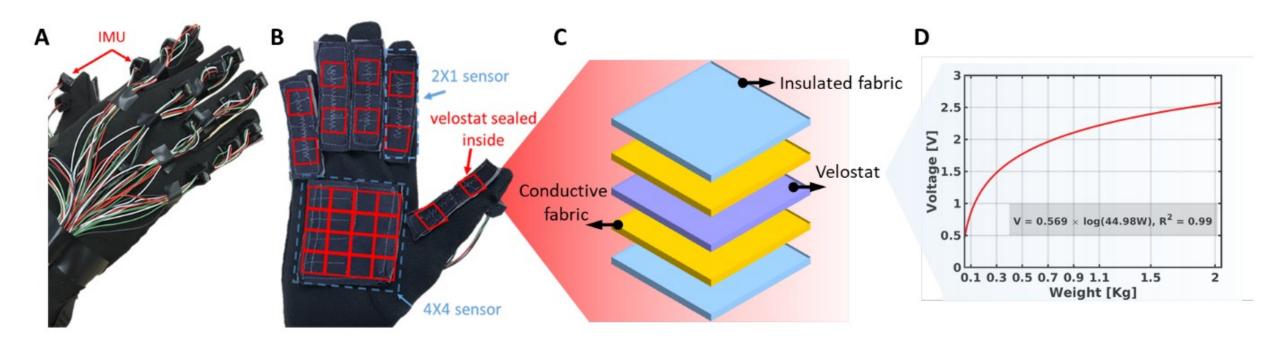
to sensors





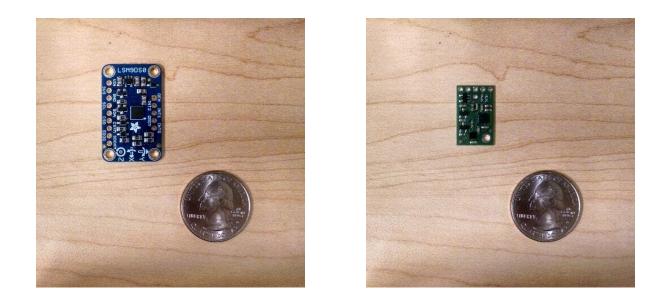


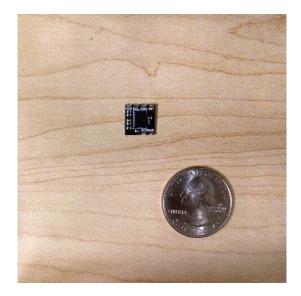
Design of a Glove-based System

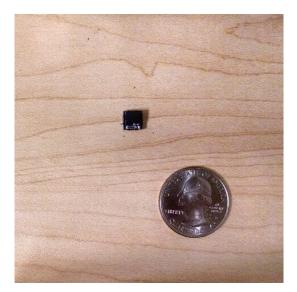


Hangxin Liu, etal

Iteration of IMUs

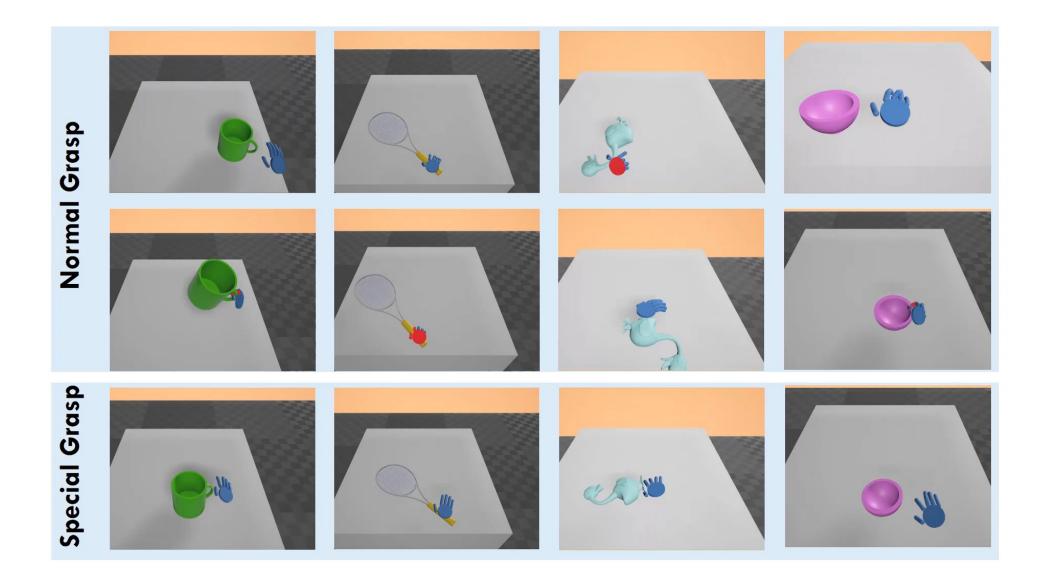




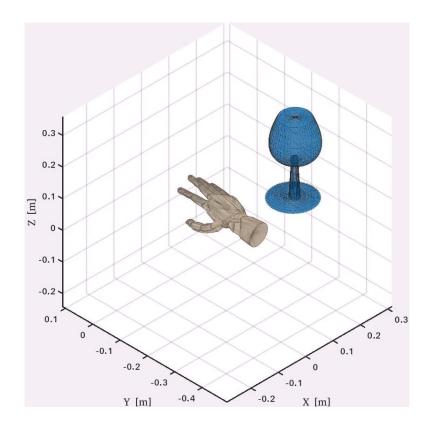


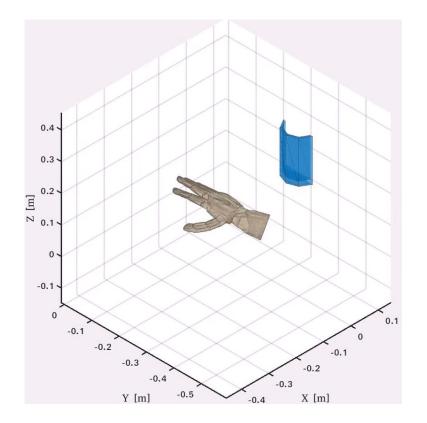
Hangxin Liu, etal

High-Fidelity Grasping in Virtual Reality



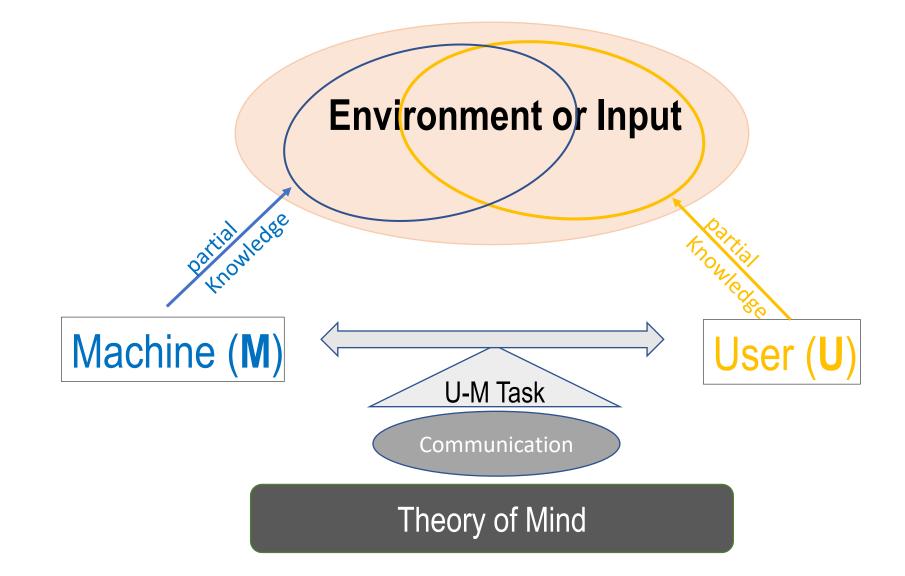
Zhengliang Zhang, etal



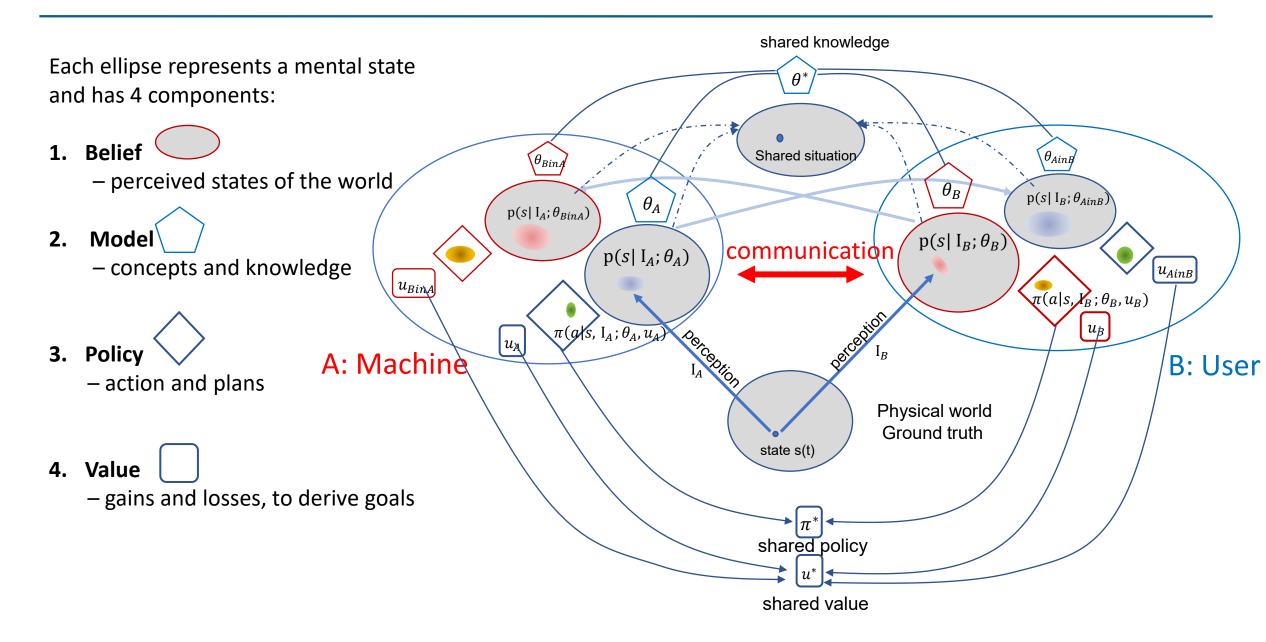


Phase III: Bidirectional Value Alignment

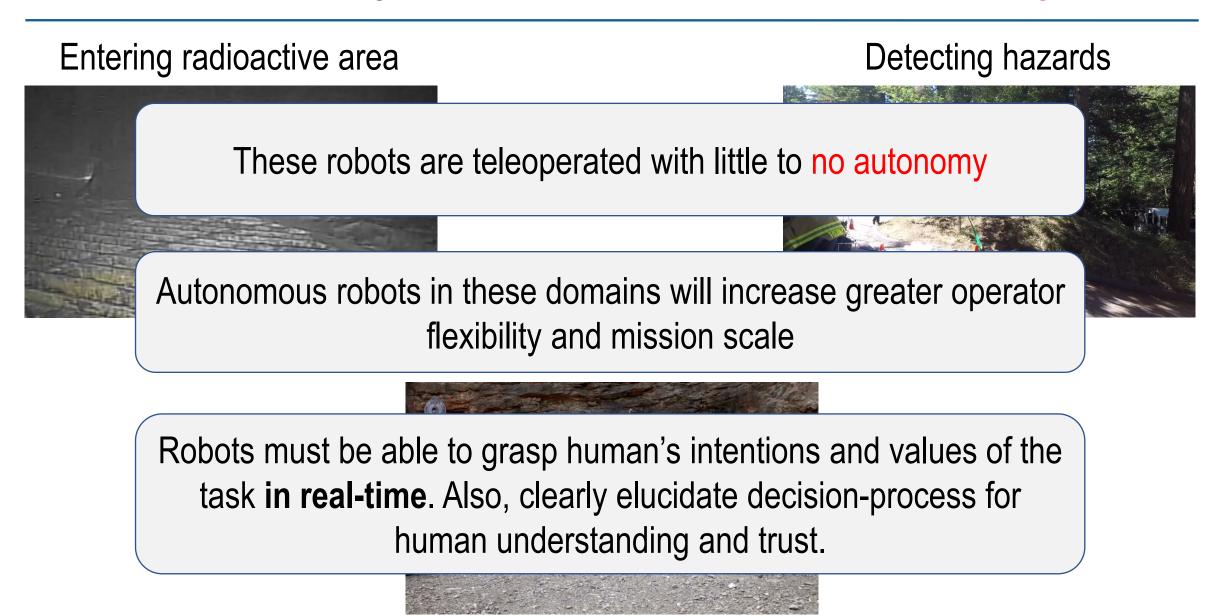
Bidirectional Alignment in Human-Robot Collaboration



Cognitive Architecture for Human-Machine Communication



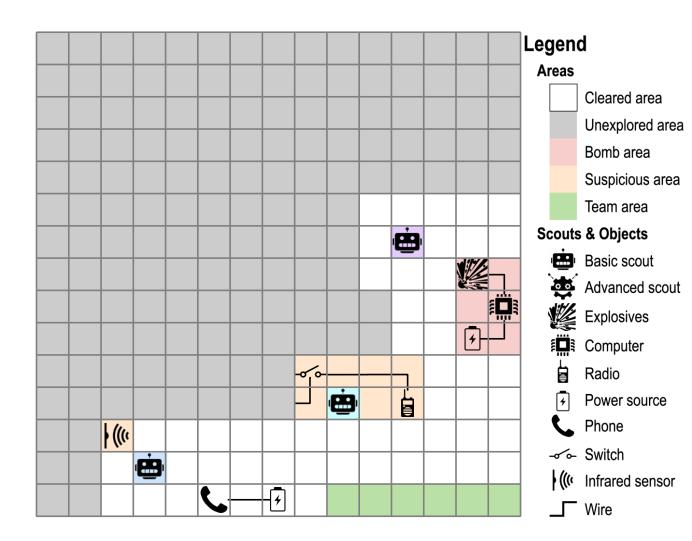
Scenairios Requiring Bielitie otior and an Read & Wagaen Anignment



Prototypical Setting: Scout Exploration Game

User-machine task setting

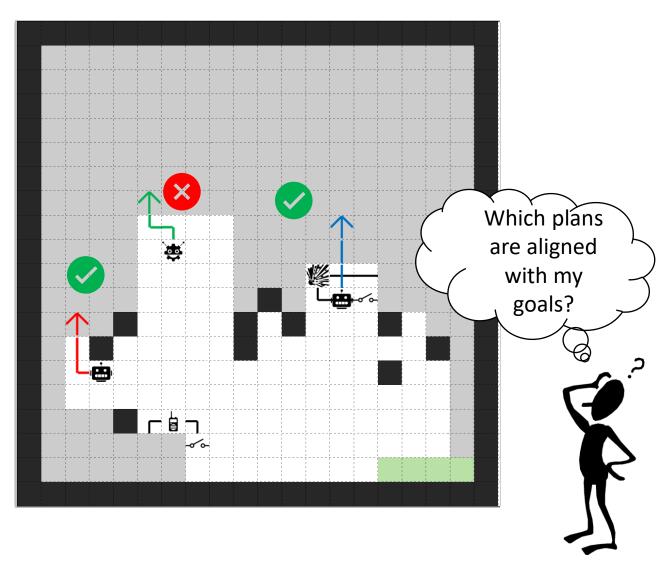
- A human-robot team is trying to find a safe path crossing an unknown terrain from the bottom right to the top left
- Additional goals may be achieved:
 - Find the path as fast as possible
 - Collect extra resources
 - Defuse bombs in the map
 - Detect as much region as possible



Prototypical Setting: Scout Exploration Game

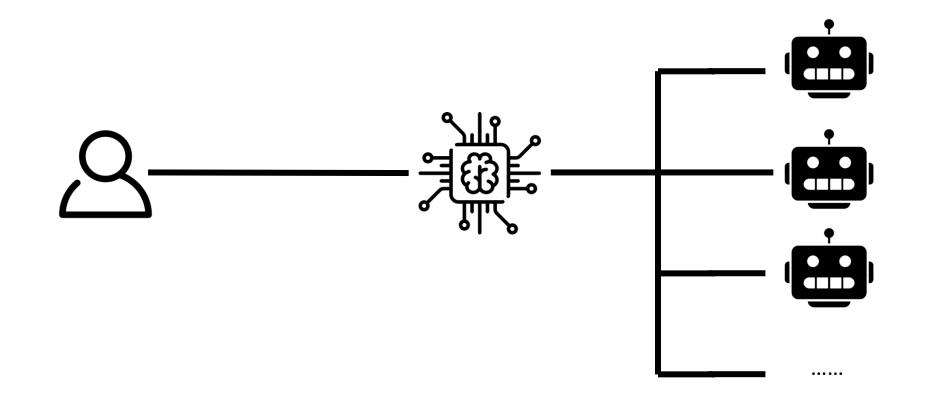
User-machine task setting

- The robots act as scouts to explore potential bombs and communicate with user.
- User can accept or reject proposals from the robot scouts
- Requires bidirectional human-robot alignment
 - Understanding human values by proposals
 - Elucidate self by providing proper explanations



Task Specification

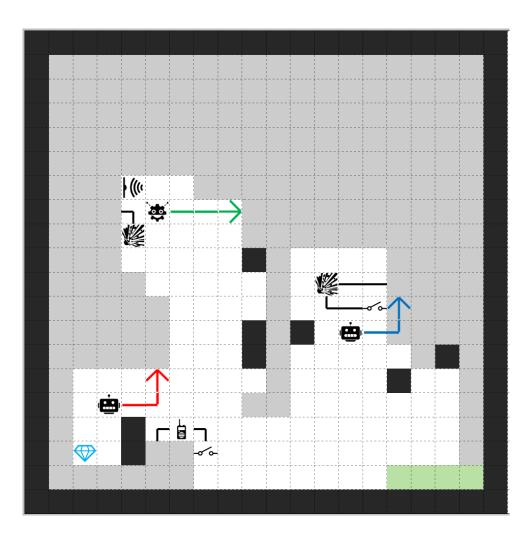
- Only the scouts are interacting with the physical states via actions/observations
- Human has hidden information that the scouts need to finish the task
- Human can only interact with a centralized agent which controls all the scouts



Scout Exploration Game Design

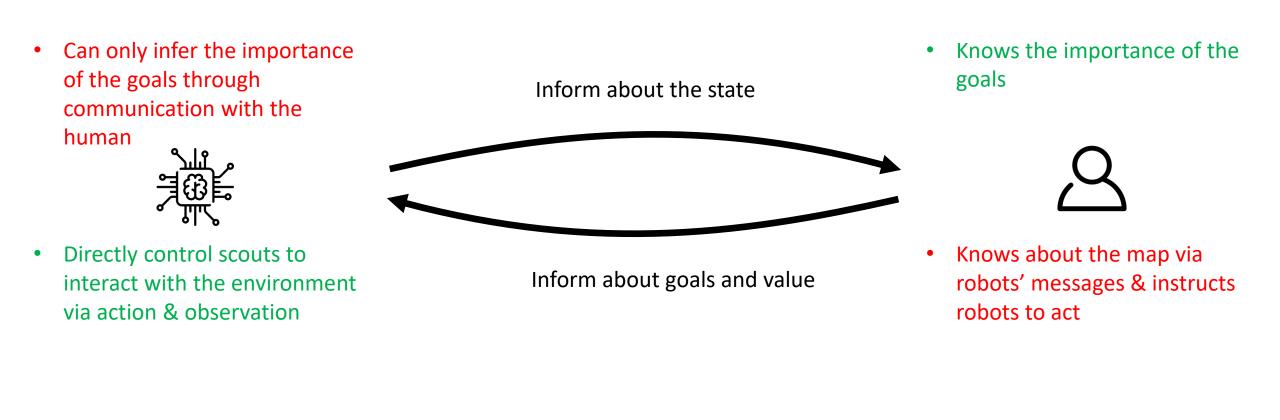
 Infer the importance of the goals and values through communication with the human

 Control scouts to interact with the environment via action & observation



• Knows the importance of the goals

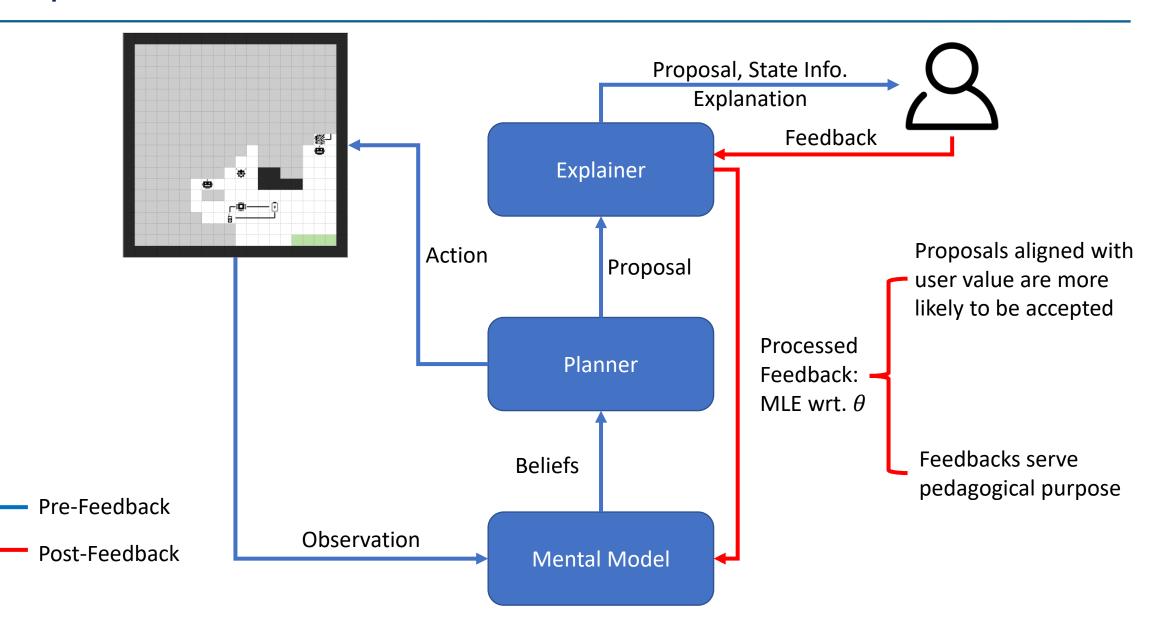
 Knows about the map via robots' messages & instructs robots to act

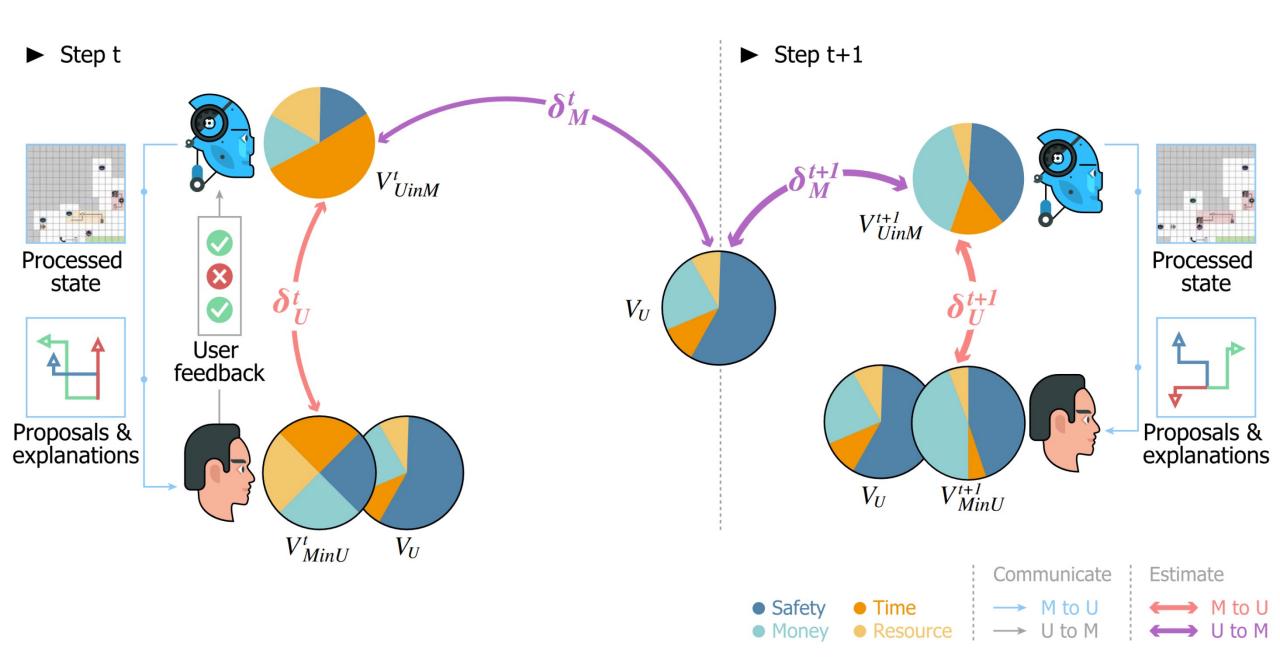


The Need for Explanation

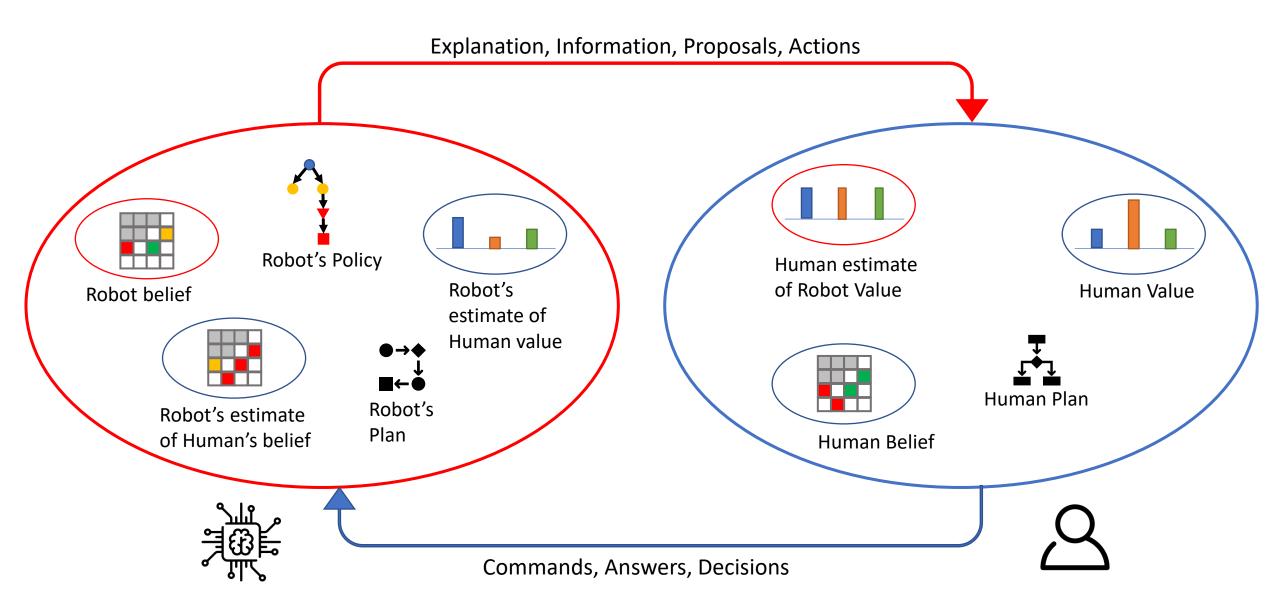
- Asymmetric information between human and robot
 - Robots have access to additional sensing information
 - Human has access to value function
- Scouts providing state information \rightarrow high human cognitive burden
- Scouts providing actions proposals \rightarrow some cognitive relief
- Scouts providing explanations → greater cognitive relief
- Improving user-machine task performance, and scaling up the team.

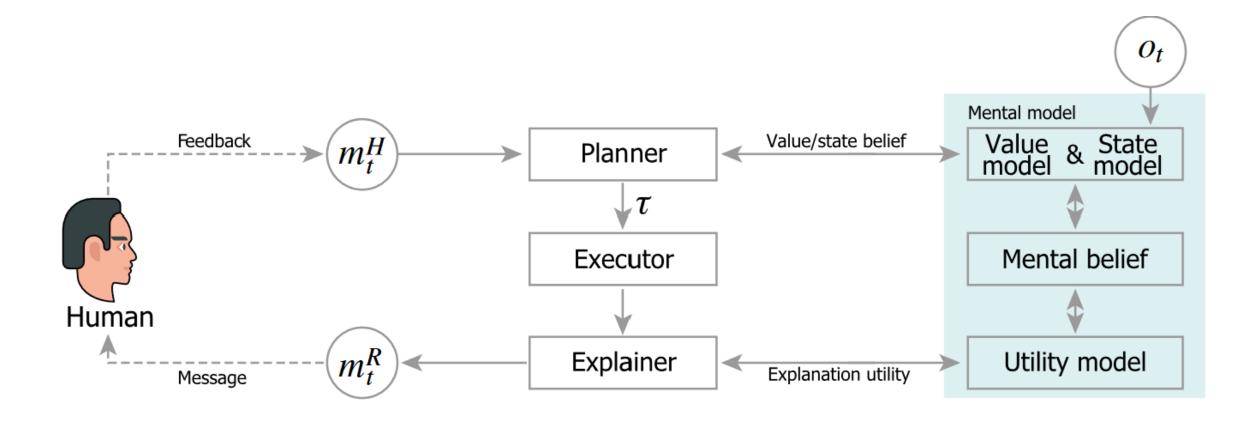
Computational Framework





Agent Representation



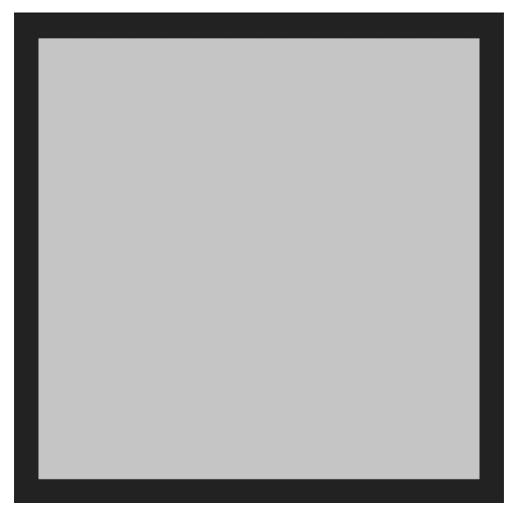


The importance of goals are modeled as a value function:

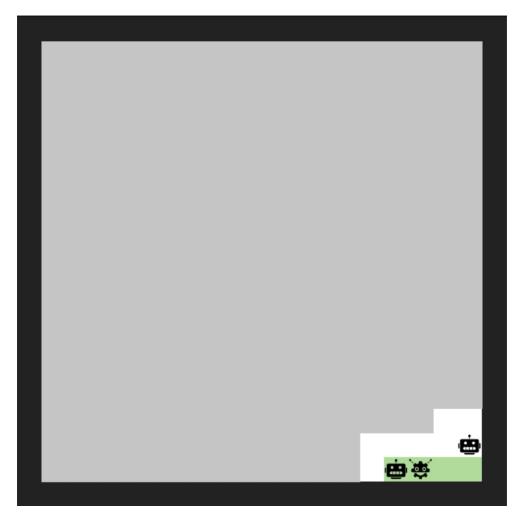
- Given robots action sequence, the task has certain measurements, each corresponds to a goal:
 - Total time used ϕ_T Number of resources collected ϕ_R Number of bomb defused ϕ_B Number of grids detected ϕ_D ϕ_i
- The performance of the task is a value defined by the importance of each goal
 - The more important a goal is, larger the corresponding dimension of θ is

$$\langle \theta^T \phi \rangle = \langle \theta_T, \phi_T \rangle + \langle \theta_R, \phi_R \rangle + \langle \theta_B, \phi_B \rangle + \langle \theta_D, \phi_D \rangle + \dots$$

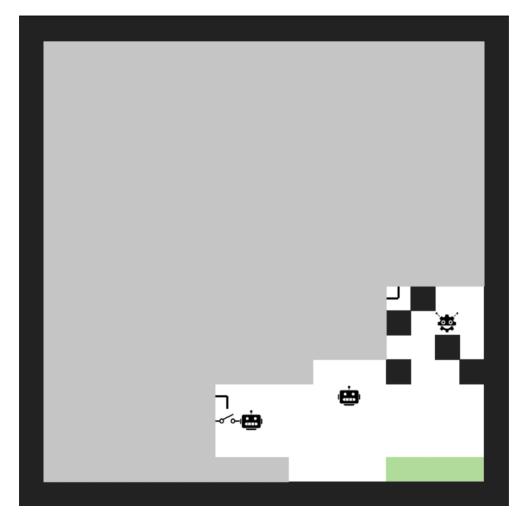
 $\|\theta\|_1 = 1$



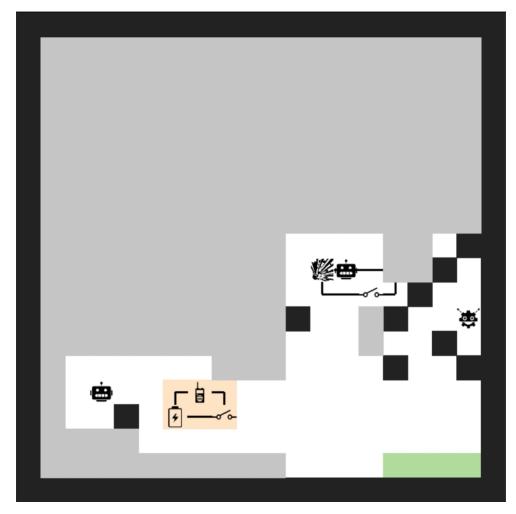
Scouts initialized



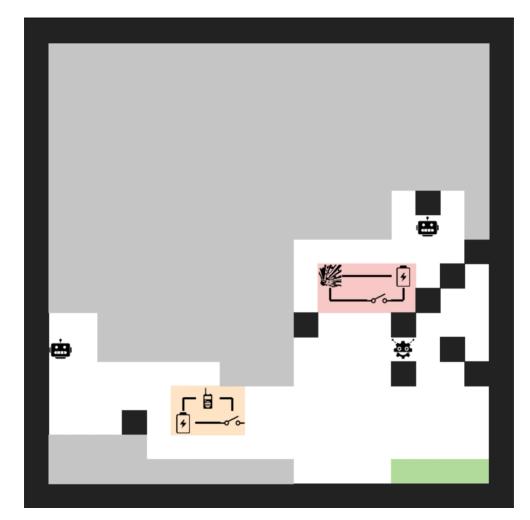
Scouts begin searching area



Suspicious device detected



Bomb detected



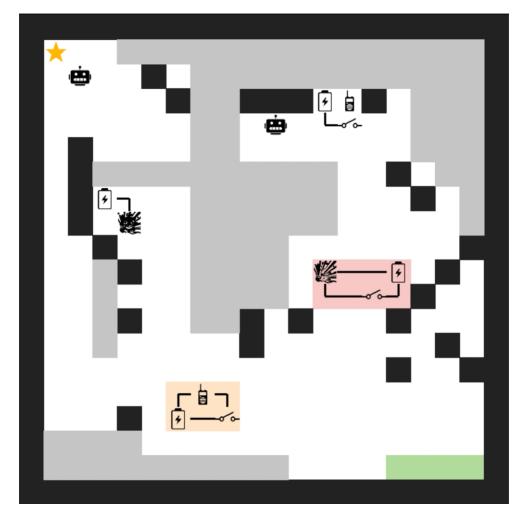
Exploration continues

Game Engine Progress

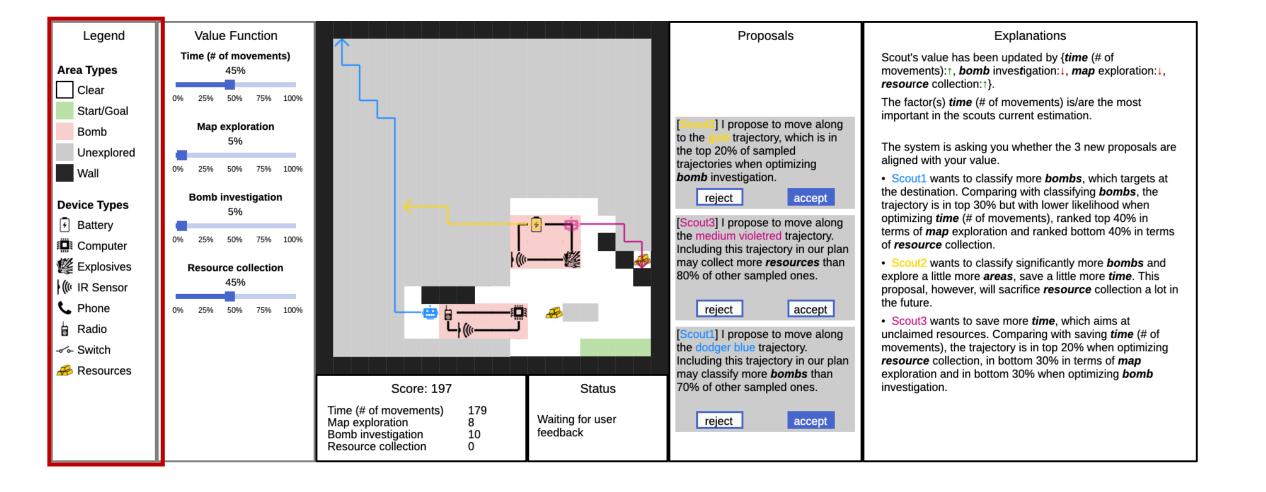


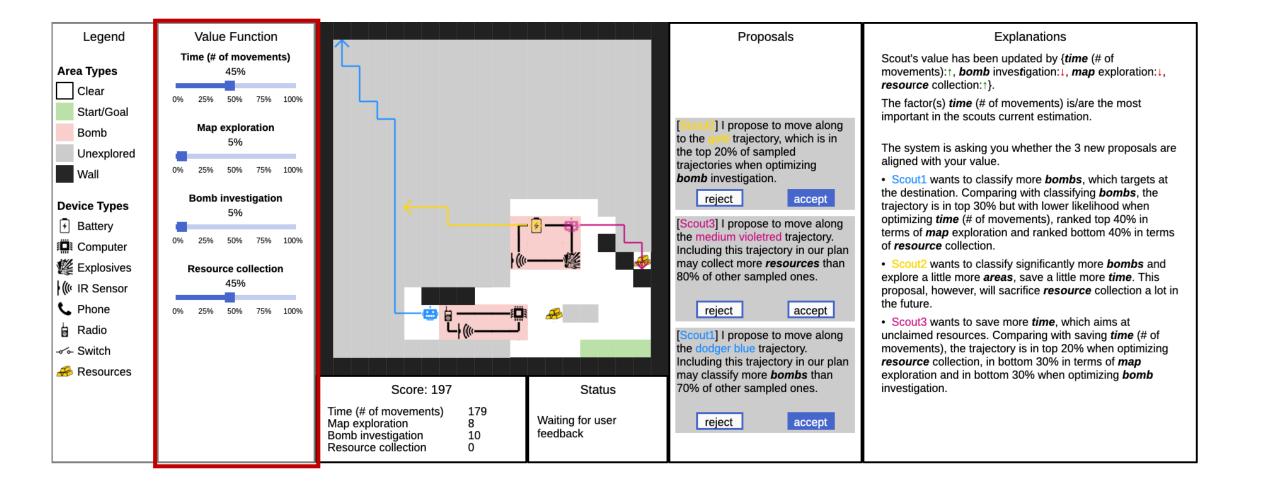
Goal discovered

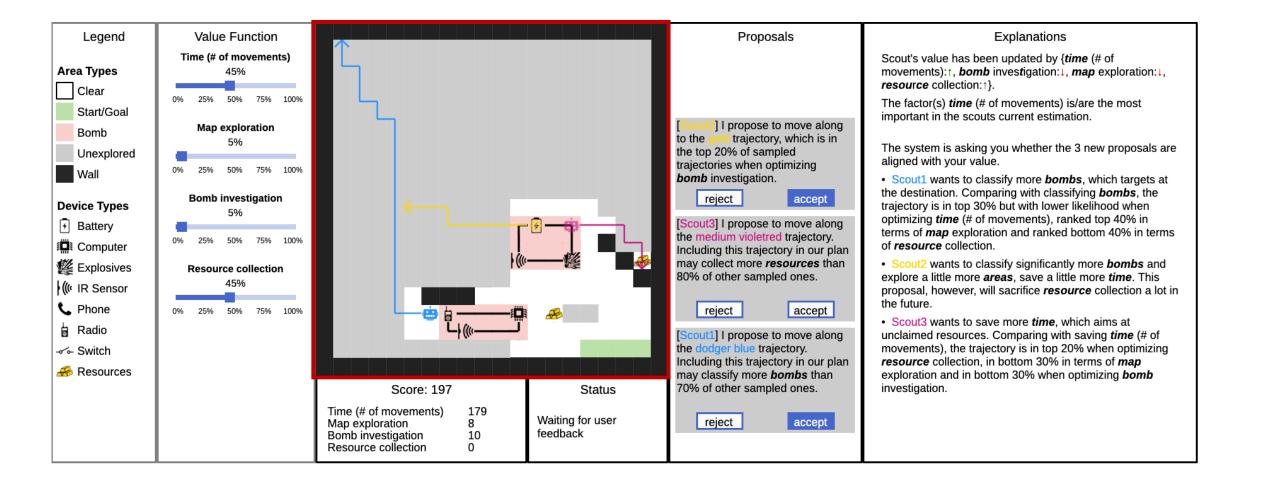
Game Engine Progress

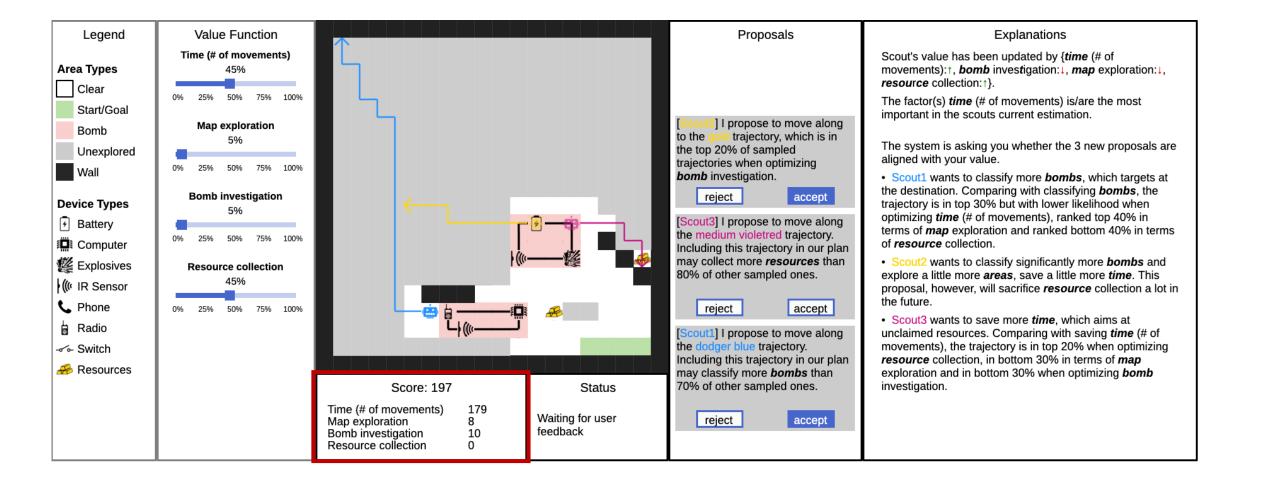


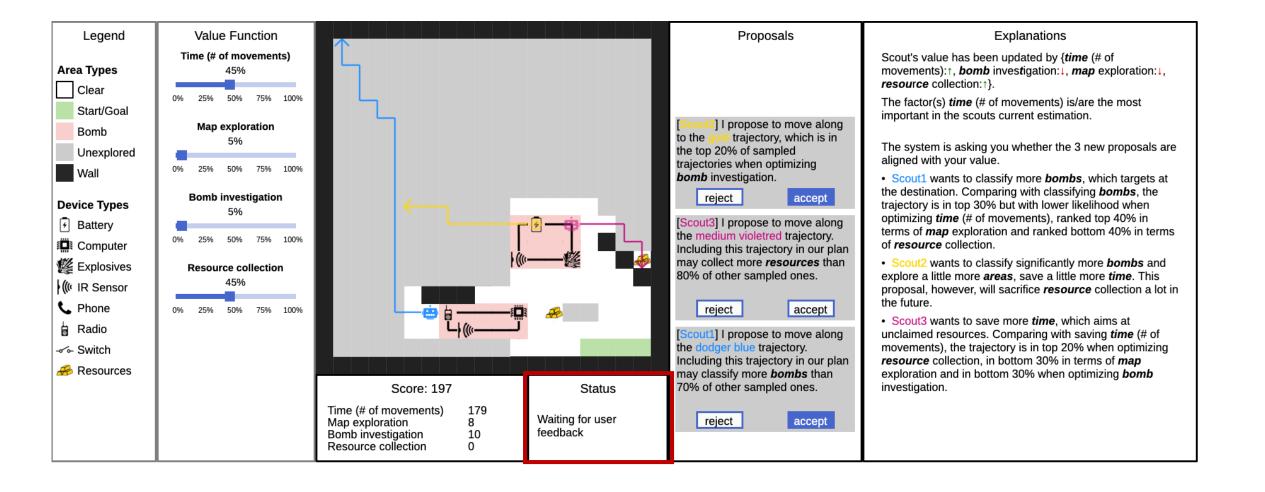
Second bomb detected

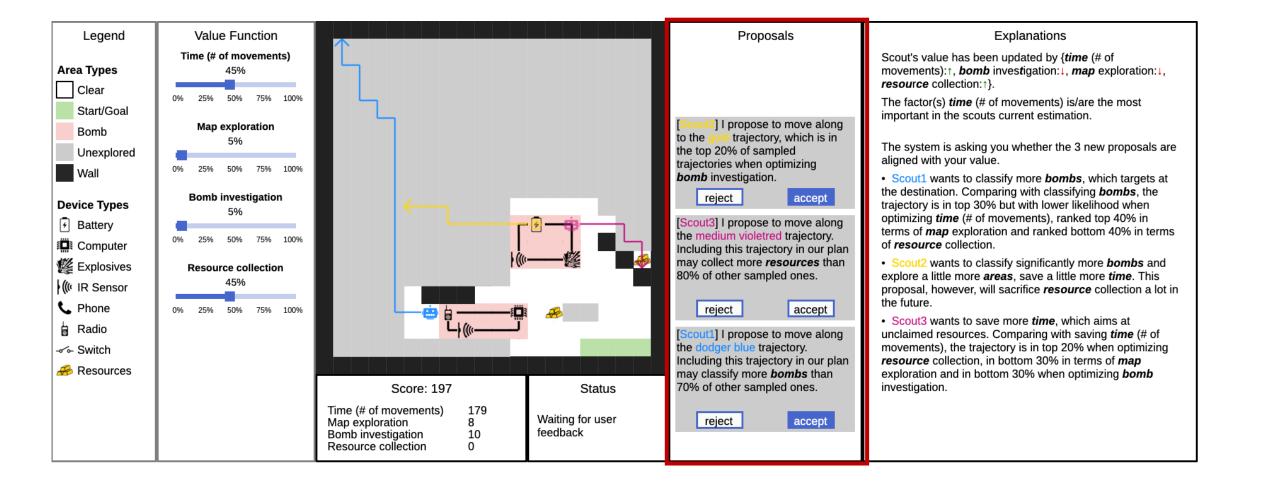


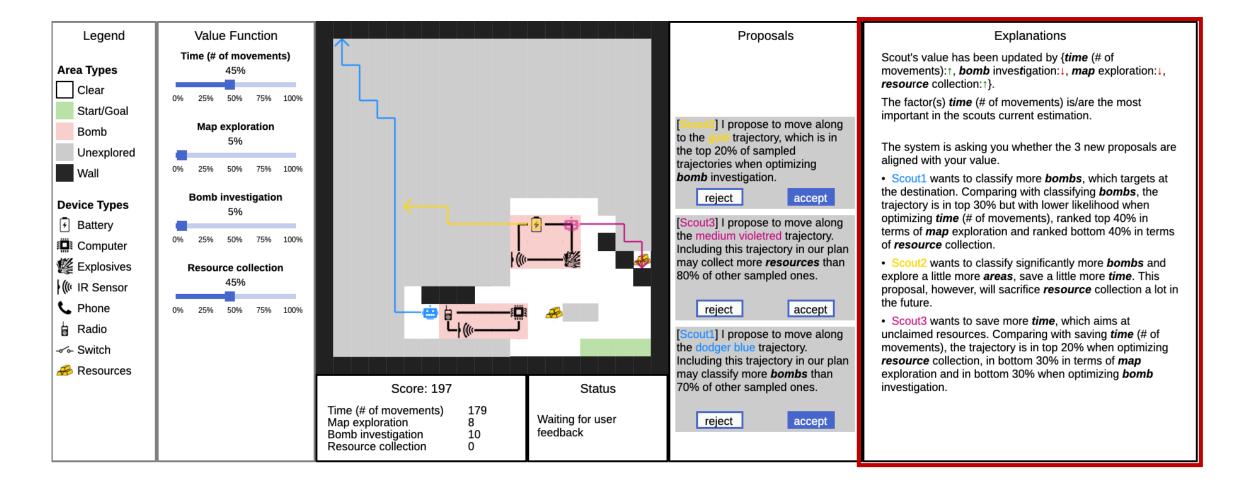




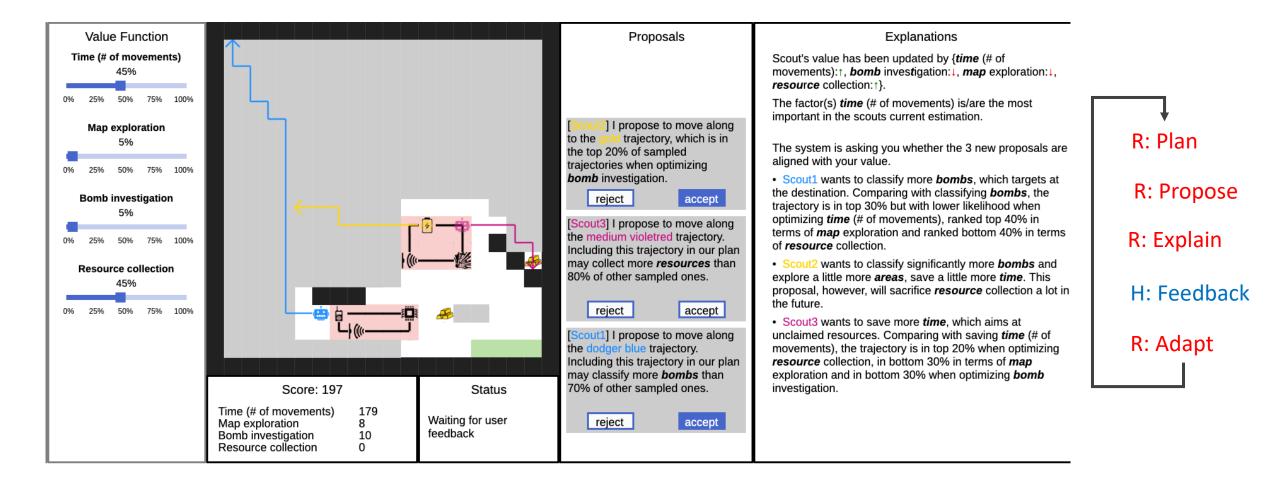


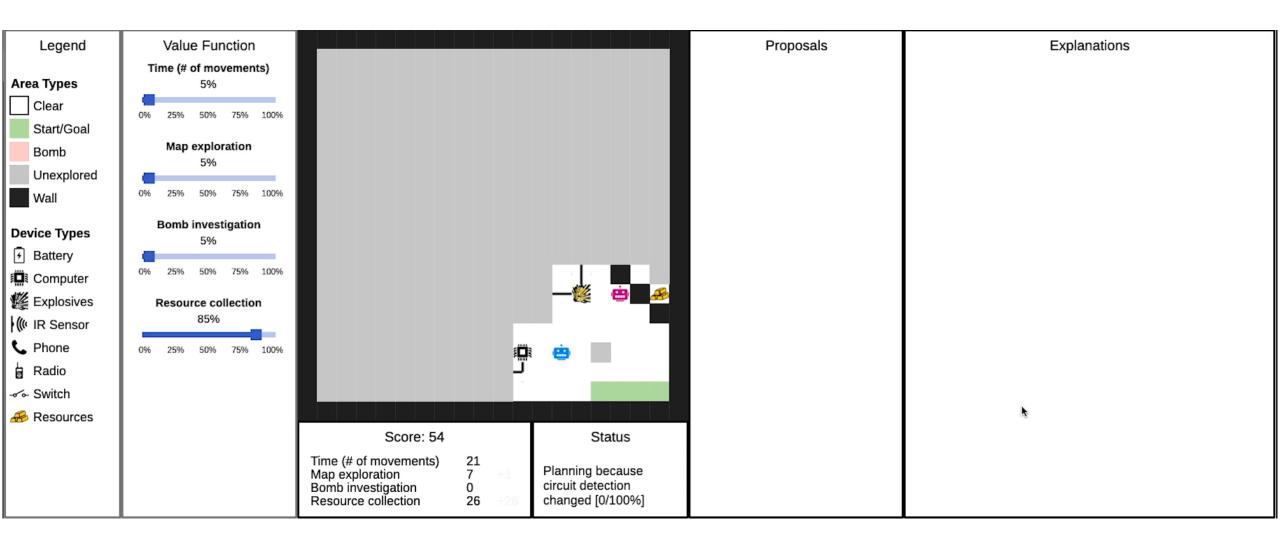


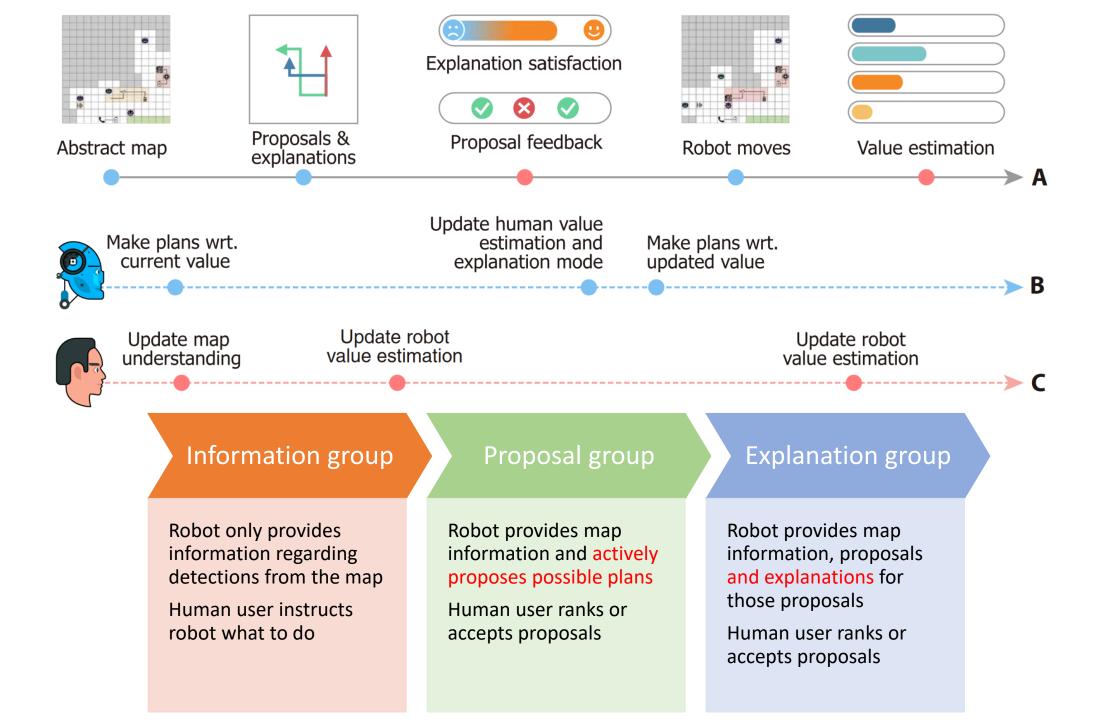


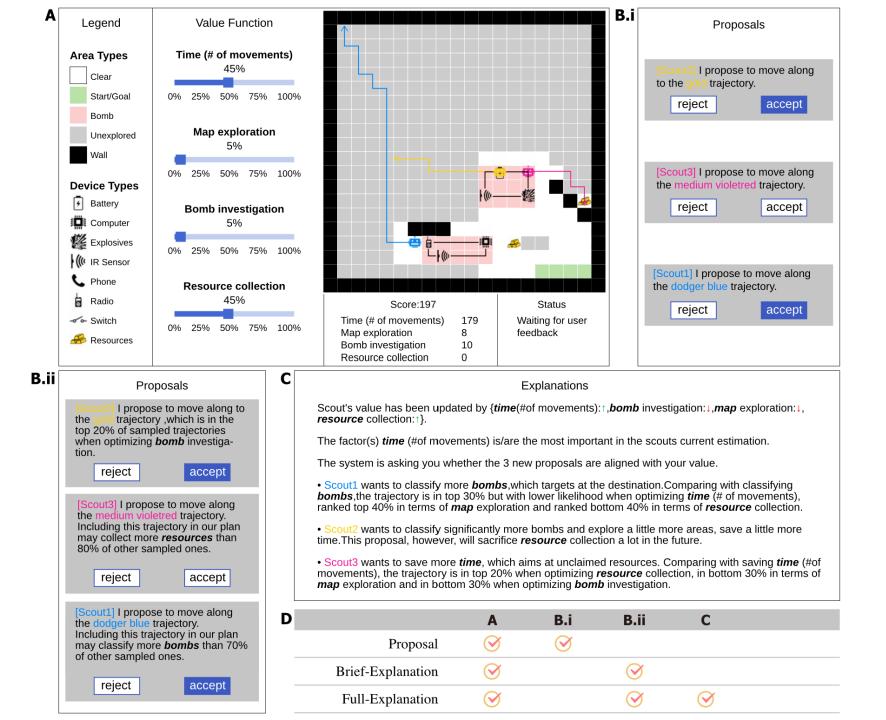


Scout Exploration Game









In Situ Bidirectional Human-Robot Value Alignment

Luyao Yuan^{*†}, Xiaofeng Gao⁺, Zilong Zheng⁺, Mark Edmonds^{*}, Ying Nian Wu, Federico Rossano, Hongjing Lu^{*}, Yixin Zhu^{*}, Song-Chun Zhu^{*}

> *Corresponding authors * Authors contributed equally to this work

Thank you!