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The Need for Explainable AI

User

• Why did you do that?

• Why not something else?

• When do you succeed?

• When do you fail?

• When can I trust you?

• How do I correct an error?

• We are entering a new age 
of AI applications

• Machine learning is the 
core technology

• Machine learning models 
are opaque, non-intuitive, 
and difficult for people to 
understand 

• The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited by the 
machine’s inability to explain its decisions and actions to users. 

• Explainable AI will be essential if users are to understand, appropriately trust, and effectively manage this 
incoming generation of artificially intelligent partners.

AI System



XAI In the News

Why The Military And 
Corporate America Want 

To Make AI Explain 
Itself

Steven Melendez
June 22, 2017

Intelligent Machines 
Are Asked to Explain 

How Their Minds 
Work

Richard Waters
July 11, 2017

You better explain 
yourself, mister: 

DARPA's mission to 
make an accountable AI

Dan Robinson 
September 29, 2017

Elon Musk and Mark 
Zuckerberg Are Arguing 
About AI -- But They're 
Both Missing the Point

Artur Kiulian
July 28, 2017

Oracle quietly 
researching 

'Explainable AI‘
George Nott
May 5, 2017

Charles River Analytics-Led 
Team Gets DARPA Contract to 
Support Artificial Intelligence 

Program
Ramona Adams

June 13, 2017Team investigates artificial 
intelligence, machine learning 

in DARPA project
Lisa Daigle

June 14, 2017

Ghosts in the Machine
Christina Couch
October 25, 2017

Inside DARPA’s Push to 
Make Artificial Intelligence 
Explain Itself
Sara Castellanos and Steven 
Norton
August 10, 2017

DARPA’s XAI seeks 
explanations from 

autonomous systems
Geoff Fein

November 16, 2017

Can A.I. Be 
Taught to 
Explain Itself? 
Cliff Kuang
November 21, 2017

The Dark Secret at 
the Heart of AI
Will Knight
April 11, 2017

Demystifying the 
Black Box That Is AI

Ariel Bleicher
August 9, 2017

How AI detectives are cracking open 
the black box of deep learning

Paul Voosen
July 6, 2017



What Are We Trying To Do?

Learning
Process

Training
Data

Learned
Function

Output

Today

This is a cat
(p = .93)

• Why did you do that?

• Why not something else?

• When do you succeed?

• When do you fail?

• When can I trust you?

• How do I correct an error?

User with
a Task

© Spin South West

© University Of Toronto

Training
Data

New
Learning
Process

Explainable Model Explanation 
Interface

Tomorrow
• I understand why

• I understand why not

• I know when you’ll succeed

• I know when you’ll fail

• I know when to trust you

• I know why you erred

This is a cat:
• It has fur, whiskers, 
and claws. 

• It has this feature: 

User with
a Task

© Spin South West

© University Of Toronto

And-Or Graph



Challenge Problems

Learn a 
model

Data 
Analytics

Classification 
Learning Task

Recommend

Explanation

Explainable 
Model

Explanation 
Interface

An analyst is looking 
for items of interest 
in massive 
multimedia data sets

Explainable 
Model

Explanation 
Interface

Autonomy

Reinforcement 
Learning Task

Actions

Explanation

ArduPilot & SITL Simulation

An operator is 
directing 
autonomous 
systems to 
accomplish a series 
of missions

Classifies items of interest 
in large data set

Learns decision policies 
for simulated missions

Explains why/why not for 
recommended items

Analyst decides which 
items to report, pursue

Explains behavior in an 
after-action review

Operator decides which 
future tasks to delegate

Use the 
explanation

Explain decisions

Multimedia Data

Two trucks performing a 

loading activity

© Getty Images

© US Army

© Air Force Research Lab

© ArduPikot.org



Goal: Performance and Explainability

Explainability (notional)

Le
ar

n
in

g 
P

er
fo

rm
an

ce
Today

Tomorrow

• XAI will create a suite of machine learning techniques that
• Produce more explainable models, while maintaining a high level of 

learning performance (e.g., prediction accuracy)

• Enable human users to understand, appropriately trust, and effectively 
manage the emerging generation of artificially intelligent partners

Performance vs. Explainability



Measuring Explanation Effectiveness

Explanation Framework

Task

Decision

Recommendation,
Decision or 

Action

Explanation
The system takes input 
from the current task 
and makes a 
recommendation, 
decision, or action

The system provides an 
explanation to the user 
that justifies its 
recommendation, 
decision, or action

The user 
makes a 
decision based 
on the 
explanation

Explainable 
Model

Explanation 
Interface

XAI System

Measure of Explanation 
Effectiveness

User Satisfaction

• Clarity of the explanation (user rating)
• Utility of the explanation (user rating)

Mental Model

• Understanding individual decisions
• Understanding the overall model
• Strength/weakness assessment
• ‘What will it do’ prediction
• ‘How do I intervene’ prediction

Task Performance

• Does the explanation improve the user’s 
decision, task performance?

• Artificial decision tasks introduced to 
diagnose the user’s understanding

Trust Assessment

• Appropriate future use and trust

Correctability (Extra Credit)

• Identifying errors
• Correcting errors
• Continuous training



Performance vs. Explainability

Explainability

Learning Techniques (today) Explainability
(notional)

Neural Nets

Statistical
Models

Ensemble
Methods

Decision
Trees

Deep
Learning

SVMs

AOGs

Bayesian
Belief Nets

Markov 
Models

HBNs

MLNs

Model Induction
Techniques to infer an 

explainable model from any 
model as a black box

Deep Explanation
Modified deep learning 

techniques to learn 
explainable features

New 
Approach

Create a suite of 
machine learning 
techniques that
produce more 
explainable models, 
while maintaining a 
high level of learning 
performance 

SRL

Interpretable Models
Techniques to learn more 

structured, interpretable, causal 
models

CRFs

Random
Forests

Graphical
Models

Le
ar

n
in

g 
P

er
fo

rm
an

ce



Approaches to Deep Explanation
(Berkeley, SRI, BBN, OSU, CRA, PARC)

Attention Mechanisms Modular Networks

Feature Identification Learn to Explain

CNN RNN



Deeply Explainable Artificial Intelligence

Berkeley/BU/U. Amsterdam/Kitware

• ArduPilot and OpenAI 
Gym Simulations

• Explain implicit (latent) 
nodes by training 
additional DL models

• Explain explicit nodes 
thru Neural Module 
Networks (NMNs).

• Reflexive explanations 
(that arise directly from 
the model)

• Rational explanations 
(that come from 
reasoning about user’s 
beliefs) 

Explainable Model Explanation Interface Challenge Problem

• Pieter Abbeel (Berkeley)
• Tom Griffiths (Berkeley)
• Kate Saenko (BU)
• Zeynep Akata (U. Amsterdam)

• Dan Klein (Berkeley)
• John Canny (Berkeley)
• Anca Dragan (Berkeley)

• Anthony Hoogs (Kitware)

• PI: Trevor Darrell (Berkeley) 

Deep Learning Reflexive & Rational Autonomy

Data Analytics

• Visual QA and 
Multimedia Event QA



DARE: Deep Attention-based Representations for Explanation

SRI/U. Toronto/UCSD/U. Guelph

• Visual Question 
Answering (VQA) using 
Visual Gnome, Flickr30 

• MovieQA

• Multiple deep learning 
techniques:
• Attention-based 

mechanisms
• Compositional NMNs
• GANs

• DNN visualization
• Query evidence that 

explains DNN decisions
• Generate natural 

language justifications

Explainable Model Explanation Interface Challenge Problem

• Richard R. Zemel (U. Toronto)
• Sanja Fidler (U. Toronto)
• David Duvenaud (U. Toronto)
• Graham Taylor (U. Guelph) 

• Jürgen Schulze (UCSD)

• PIs: Giedrius Burachas (SRI), Mohamed Amer (SRI) 

Deep Learning Show-and-Tell 
Explanations

Data Analytics

• Shalini Ghosh (SRI) 
• Avi Ziskind (SRI)
• Michael Wessel (SRI)



EQUAS: Explainable QUestion Answering System

Raytheon BBN/GA Tech /UT Austin/MIT

• Visual Question 
Answering (VQA), 
beginning with images 
and progressing to video

• Semantic labelling of 
DNN neurons

• DNN audit trail 
construction

• Gradient-weighted Class 
Activation Mapping

• Comprehensive strategy 
based on argumentation 
theory

• NL generation
• DNN visualization

Explainable Model Explanation Interface Challenge Problem

• Devi Parikh (GA Tech)
• Dhruv Batra (GA Tech)

• PI: William Ferguson (Raytheon BBN) 

Deep Learning Argumentation
Theory

Data Analytics

• Antonio Torralba (MIT)
• Ray Mooney (UT Austin)



Naturalistic Decision Making Foundations of Explainable AI

IHMC/MacroCognition/Michigan Tech

• Conduct interactive 
assessment and formal 
human experiments

• Validate the model 
• Develop metrics of 

explanation 
effectiveness

• Extensive review of 
relevant psychological 
theories

• Extend the theory of 
Naturalistic Decision 
Making to cover 
explanation

• Represent reductionist 
mental models that 
humans develop as part 
of the explanatory 
process

• Including mental 
simulation

• Gary Klein (MacroCognition)
• Shane T. Mueller (Michigan 

Tech)

• Jordan Litman (IHMC 
Psychometrician) 

• Simon Attfield (Middlesex 
University-London)

• Peter Pirolli (IHMC)

• PI: Robert R. Hoffman (IHMC)

Naturalistic Theory Bayesian Framework Experiments

• William J. Clancey (IHMC)
• COL Timothy M. Cullen 

(SAASS)

Literature Review Computational Model Model Validation



Tractable Probabilistic Logic Models:
A New, Deep Explainable Representation

UT Dallas/UCLA/Texas A&M/IIT-Delhi

• Infer activities in 
multimodal data (video 
and text)

• Using the Wetlab 
(biology) and TACoS 
(cooking) datasets

• Tractable Probabilistic 
Logic Models (TPLMs) –
an important class of 
(non-deep learning) 
interpretable models

• Enables users to explore 
and correct the 
underlying model as well 
as add background 
knowledge

Explainable Model Explanation Interface Challenge Problem

• PI: Vibhav Gogate (UT Dallas)

Probabilistic Logic Probabilistic 
Decision Diagrams

Data Analytics

• Adnan Darwiche (UCLA)
• Guy Van Den Broeck (UCLA)
• Nicholas Ruozzi (UT Dallas)

• Eric Ragan (Texas A&M)
• Parag Singla (IIT-Delhi)



XRL: Explainable Reinforcement Learning for AI Autonomy

CMU/Stanford

• Open AI Gym
• Autonomy in the 

electrical grid
• Mobile service robots
• Self-improving 

educational software

• Create a new scientific 
discipline for Explainable 
Reinforcement Learning 
with work on new 
algorithms and 
representations

• Interactive explanations 
of dynamic systems 

• Human-machine 
interaction to improve 
performance

Explainable Model Explanation Interface Challenge Problem

• Zico Kolter (CMU)
• Pradeep Ravikumar (CMU)

• Manuela Veloso (CMU)
• Emma Brunskill (Stanford)

• PI: Geoff Gordon (CMU)

XRL Models XRL Interaction Autonomy



Transforming Deep Learning to Harness the Interpretability of 
Shallow Models: An Interactive End-to-End System

Texas A&M/Wash. State

• Multiple tasks using data 
from Twitter, Facebook, 
ImageNet, UCI, NIST and 
Kaggle 

• Metrics for explanation 
effectiveness

• Develop a mimic 
learning framework that 
combines deep learning 
models for prediction 
and shallow models for 
explanations

• Interactive visualization 
over multiple views, using 
heat maps & topic 
modeling clusters to show 
predictive features

Explainable Model Explanation Interface Challenge Problem

• Eric Ragan (Texas A&M)

• PI: Xia Hu (Texas A&M) 

Mimic Learning Interactive
Visualization

Data Analytics

• Shuiwang Ji (Wash. State)



Network Dissection Quantifying Interpretability of 
Deep Representations (MIT)

Interpretation of 
several units in 
pool5 of AlexNet 
trained for place 
recognition

Audit trail: for a particular output unit, the 
drawing shows the most strongly activated 

path 



Causal Model Induction: Experiment with the learned model (as a grey box) to 
learn an explainable, causal, probabilistic programming model

Causal Model Induction (CRA)



CAMEL: Causal Models to Explain Learning

CRA/U. Mass/Brown

• Minecraft, Starcraft
• Experiment with the 

learned model (as a grey 
box) to learn an 
explainable, causal, 
probabilistic 
programming model

• Interactive visualization 
based on the generation 
of temporal, spatial 
narratives from the causal, 
probabilistic models 

Explainable Model Explanation Interface Challenge Problem

• Avi Pfeffer (CRA)
• David Jensen (U. Mass)
• Michael Littman (Brown)

• PI: Brian Ruttenberg (CRA)

Model Induction
Causal Models

Narrative Generation Autonomy

Data Analytics

• Pedestrian Detection 
(INRIA), Activity 
Recognition 
(ActivityNet)

• James Niehaus (CRA)
• Emilie Roth (Roth Cognitive Engineering
• Joe Gorman(CRA)
• James Tittle (CRA)



Explanation by Selection of Teaching Examples
(Rutgers)

BAYESIAN TEACHING for optimal selection of examples for machine explanation

TRAINING DATA

because it is similar to these 
examples

and dissimilar to these examples

brow lowered

lips thinned/ 
pushed out

nostrils 
flared

cheekbones 
raised

mouth 
raised

chin pushed 
out/up

EXPLAINABLE CLASSIFICATION MODEL

This face is Angry



Model Explanation by Optimal Selection of Teaching Examples

Rutgers

• Movie descriptions 
• Image processing 
• Caption data 
• Movie events
• Human motion events

• Select the optimal 
training examples to 
explain model decisions 
based on Bayesian 
Teaching

• Example-based 
explanation of: 
• the full model
• user-selected sub-

structure
• user submitted 

examples

Explainable Model Explanation Interface Challenge Problem

• PI: Patrick Shafto (Rutgers)

Model Induction Bayesian Teaching Data Analytics

• Scott Cheng-Hsin Yang (Rutgers)



Autonomy (PARC, OSU)

Common Ground Builder
• Explain
• Train
• Evaluate

Robotics Curriculum

An interactive sensemaking system to explain the 
learned performance capabilities of a UAS flying in 

an ArduPilot simulation testbed

Tools for explaining deep adaptive programs 
and discovering best principles for designing 

explanation user interfaces

xNN

Annotation Aware
Reinforcement 

Learning 

Explanation
Learner

Deep Adaptive Program

Saliency 
Visualizer

Game Engine

Interactive 
Naming

Interface

xFSM

Visual
Words

Common Ground Learning and Explanation 
(COGLE)

Explanation-Informed Acceptance Testing of Deep 
Adaptive Programs (xACT)

Decision Net



COGLE: Common Ground Learning and Explanation

PARC/CMU/U. Edinburgh/U. Mich./West Point

• ArduPilot simulation 
environment 

• Value of Explanation 
(VoE) framework for 
measuring explanation 
effectiveness

• 3-layer architecture: 
• Learning Layer (DNNs)
• Cognitive Layer (ACT-R 

Cog. Model)
• Explanation Layer 

(HCI)

• Interactive visualization 
of states, actions, policies 
& values

• Includes a module for 
test pilots to refine and 
train the system

Explainable Model Explanation Interface Challenge Problem

• Sricharan Kumar (PARC)
• Honglak Lee (U. Mich.)
• Subramanian Ramamoorthy 

(U. Edinburgh)

• Christian Lebiere (CMU)
• John Anderson (CMU)
• Robert Thomson (USMA) 

• Michael Youngblood (PARC)

• PI: Mark Stefik (PARC)

Cognitive Model Interactive Training Autonomy



xACT: Explanation-Informed Acceptance Testing of Deep Adaptive 
Programs

OSU

• Real-Time Strategy 
Games based on custom 
designed game engine 
designed to support 
explanation

• Possible use of Starcraft

• Explainable Deep 
Adaptive Programs 
(xDAPs) – a new 
combination of Adaptive 
Programs, Deep Learning 
and explainability

• Provides a visual & NL 
explanation interface for 
acceptance testing by 
test pilots based on 
Information Foraging 
Theory

Explainable Model Explanation Interface Challenge Problem

• Tom Dietterich (OSU)
• Fuxin Li (OSU)
• Prasad Tadepalli (OSU)
• Weng-Keen Wong (OSU)

• Margaret Burnett (OSU) 
• Martin Erwig (OSU)
• Liang Huang (OSU)

• PI: Alan Fern (OSU)

Adaptive Programs Acceptance Testing Autonomy



Learning and Communicating Explainable Representations for 
Analytics and Autonomy

UCLA/OSU/Michigan State

• Integrated 
representation across an 
entropy spectrum: 
• Deep Neural Nets 
• Stochastic And-Or-

Graphs (AOG)
• Predicate Calculus

• Integrate 3 levels of 
explanation: 
• Concept compositions
• Causal and 

counterfactual 
reasoning

• Utility explanations

Explainable Model Explanation Interface Challenge Problem

• Ying Nian Wu (UCLA)
• Sinisa Todorovic (OSU)

• PI: Song-Chun Zhu (UCLA)

Pattern Theory+ 3-Level Explanation Autonomy

Data Analytics
• Understanding complex 

multimedia events

• Joyce Chai (Michigan State)

• Humanoid robot 
behavior and VR 
simulation platform



• TA1: Explainable Learners

• Multiple TA1 teams will develop prototype explainable learning systems that 
include both an explainable model and an explanation interface

• TA2: Psychological Model of Explanation

• At least one TA2 team will summarize current psychological theories of explanation 
and develop a computational model of explanation from those theories 

XAI Program Structure

Challenge 
Problem

Areas

Evaluation 
Framework

Evaluator
Naval Research Lab

TA 2: 
Psychological 
Model of 
Explanation

TA 1:
Explainable 
Learners

Autonomy
ArduPilot & 

SITL Simulation

Data Analytics
Multimedia Data

Explanation Measures

• User Satisfaction

• Mental Model

• Task Performance

• Trust Assessment

• Correctability
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Explanation 
Effectiveness

• Psych. Theory of 
Explanation

• Computational 
Model

• Consulting

Teams that provide 
prototype systems with 
both components:

• Explainable Model

• Explanation 
Interface

Deep
Learning
Teams

Interpretable
Model
Teams

Model
Induction

Teams



Challenge Problem Candidates

Analytics Autonomy

Starcraft2 ELF-MiniRTSMovieQA CLEVR

ActivityNet
ArduPilot Driving Simulator

Visual Question Answering

Activity Recognition

Strategy Games

Vehicle Control



IHMC/MacroCognition/Michigan Tech
Psychological Models of Explanation

User
Better 

Performance

“Goodness” 
Criteria

Test of 
Satisfaction

Test of 
Comprehension

Test of 
Performance

Trust or 
Mistrust

Appropriate 
Trust

System

is assessed by

receives

may initially

gives way to Appropriate 
Use

enables

revises enables

is assessed by is assessed by

can engender

Explanation
User’s Mental 

Model

involves

XAI 
Process

XAI 
Metrics

Model of the Explanation 
Process and Possible Metrics



Schedule and Milestones 

• Technical Area 1 (Explainable Learners) Milestones:
• Demonstrate the explainable learners against problems proposed by the developers (Phase 1)
• Demonstrate the explainable learners against common problems (Phase 2)
• Deliver software libraries and toolkits (at the end of Phase 2)

• Technical Area 2 (Psychology of Explanation) Milestones:
• Deliver an interim report on psychological theories (after 6 months during Phase 1)
• Deliver a final report on psychological theories (after 12 months, during Phase 1)
• Deliver a computational model of explanation (after 24 months, during Phase 2)
• Deliver the computational model software (at the end of Phase 2)

APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY

KickOff Progress Report Tech Demos Eval 1 Results Eval 2 Results Final

2021

PHASE 1: Technology Demonstrations PHASE 2: Comparative Evaluations

Prep for Eval 2

2017 2018 2019 2020

Eval 

2

Analyze 

Results
Prep for Eval 3

Eval 

3

Analyze Results & 

Accept Toolkits
Evaluator Define Evaluation Framework

Prep for 

Eval 1

Eval 

1

Analyze 

Results

Meetings

Refine & Test Explainable 

Learners

(against common problems)

Eval 

3

Deliver Software 

Toolkits

TA 2
Summarize Current Psychological 

Theories of Explanation

Develop Computational Model of 

Explanation

Refine & Test 

Computational Model

Deliver 

Computational 

Model

TA 1
Develop & Demonstrate Explainable Models 

(against proposed problems)

Eval 

1

Refine & Test Explainable 

Learners

(against common problems)

Eval 

2



XAI Evaluation

NRL

• Evaluation protocols
• Training environment

• Training data
• Simulation environ.

• Testing environment
• Subjects
• Web infrastructure

• Baseline systems

Challenge Problems Evaluation Framework Measurement

• Mike Pazzani (UC Riverside)

• PI: David Aha

Analytics

• Justin Karneeb (Knexus)
• Matt Molineaux (Knexus)
• Leslie Smith (NRL)

Two trucks 

performing a 

loading activity

Autonomy

Explanation Effectiveness
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Today

Tomorrow



Phase I: Attention Map



1. Motivation: Being able to explain is crucial for gaining trust

Example: In 2015, An Amtrak Passenger Train 188 had reached a speed of 106 mph 

at a curve with speed limit 50 mph and derailed. 8 died and 85 were sent to hospital.

The public perspective on the train driver drastically changed from The driver being 

“absolutely guilty” to “not really his fault” after explaining them the causes.

Explanation is crucial for:

• System Safety

• Debugging

• Causality

• Justice 

• Public Relations

Justified Trust :

Knowing when a person 

system works  and when 

does not !



A crisis for deep models: crucial applications cannot trust DNN models

[1] Szegedy, Christian, et al. "Intriguing properties of neural networks." ICLR 2014.

[2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015.



2. Concepts:  What are Interpretation and Explanation?

Example: attribute parse graph

Appearance attributes:

• Male/female; 

• Clothes style;

• Hair styles etc;

• Hat/Glass/…

Geometric Attributes:

• Pose and parts

• Actions

• Interactions with objects.
Seyoung Park, Xiaohan Nie, Brandon Rothrock, Song-Chun Zhu 

Interpretable representation:

Establish a common language between machines and humans.

A language is the set produced by a grammar (And-Or Graph).



𝛼-𝛽-𝛾 pathways for recognition.

Explanation is built on an interpretable representation

w𝛽(left-eye)

w𝛼(face)

w𝛽(right-eye)

w𝛽(nose)

w𝛽(mouth)

w𝛾(head-shoulder)

x-atom

x-context

x-components

Explanations

from all paths
Scores grounded to data

Example: Why is it a Human Face?

Tianfu Wu, Song-Chun Zhu 



Recursive 𝛼-𝛽-𝛾 channels in a parse graph

Interpretability = entropy ( prob.(parse graph | input image) ). 

For most daily images, we usually perceive only 1 interpretation. Otherwise we are confused all the time. 

This is because we stop growing the parse graph when the entropy is too high, as it becomes speculation

Arjun Akula, Song-Chun Zhu 



Contribution 

of each channel.

Prediction score

Prediction maps from 

different layers

Example: Calculating the contributions of 𝛼-𝛽-𝛾 channels

Wenguang Wang, Song-Chun Zhu 



Bird Dog Horse

Filter 1 Filter 1

Feature maps of an original CNN Feature maps of an interpretable CNN

An original CNN An interpretable CNN

Loss

Loss

Loss

H({T+,T-}|X) encourages 
a low entropy of 

activations among 
different categories.

H(T+|X=x) encourages a 
low entropy of the spatial 
distribution of activations 

in each feature map.

DNN is not interpretable, as its neurons have “many-to-many” mapping to categories.

Filter 1

Filter 2

Filter 3

Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu 



Filter 1

Filter 2

Filter 3

Bird Dog Horse

Filter 1 Filter 1

Feature maps of an original CNN Feature maps of an interpretable CNN

An original CNN An interpretable CNN

Loss

Loss

Loss

H({T+,T-}|X) encourages 
a low entropy of 

activations among 
different categories.

H(T+|X=x) encourages a 
low entropy of the spatial 
distribution of activations 

in each feature map.

Adding regularization term to minimize the entropy of interpretation

Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu 



Bird Dog Horse

Filter 1 Filter 1

Feature maps of an original CNN Feature maps of an interpretable CNN

An original CNN An interpretable CNN

Loss

Loss

Loss

H({T+,T-}|X) encourages 
a low entropy of 

activations among 
different categories.

H(T+|X=x) encourages a 
low entropy of the spatial 
distribution of activations 

in each feature map.

Adding regularization term to minimize the entropy of interpretation

Filter 1

Filter 2

Filter 3

Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu 



Bird Dog Horse

Filter 1 Filter 1

Feature maps of an original CNN Feature maps of an interpretable CNN

An original CNN An interpretable CNN

Loss

Loss

Loss

An interpretable CNN

H({T+,T-}|X) encourages 
a low entropy of 

activations among 
different categories.

H(T+|X=x) encourages a 
low entropy of the spatial 
distribution of activations 

in each feature map.

Adding regularization term to minimize the entropy of interpretation !

Filter 1

Filter 2

Filter 3

Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu 



 

FC layer

FC layer

Output

Input

Head TorsoTail

Explanatory graph

Active QA for 
Annotations

Interpretable 
DNNs

Disentangle DNN neurons, and map them to nodes in parse graph.

Parse 
Graph

Disentangle DNN neurons into an Interpretable DNNs

Quanshi Zhang, Ying Nian Wu, Song-Chun Zhu 



Close the Loop: DNN – AOG – LOGIC



Phase II: Enhancing Trust







V1.0 V2.0

V4.0V3.0











Phase III: Bidirectional Value Alignment



Bidirectional Alignment in Human-Robot Collaboration

U-M Task

Environment or Input

Communication

Theory of Mind

User (U)Machine (M)





Physical world

Ground truth

A: Machine

state s(t)

B: User
I𝐵

p(𝑠| I𝐵; 𝜃𝐵)

I𝐴

p(𝑠| I𝐴; 𝜃𝐴)

p(𝑠| I𝐴; 𝜃𝐵𝑖𝑛𝐴)
p(𝑠| I𝐵; 𝜃𝐴𝑖𝑛𝐵)

𝜃𝐵

𝜃𝐵𝑖𝑛𝐴

𝜃𝐴

𝜃𝐴𝑖𝑛𝐵

𝑢𝐴
𝑢𝐵

𝑢𝐵𝑖𝑛𝐴
𝑢𝐴𝑖𝑛𝐵

𝜋 𝑎 𝑠, I𝐴 ; 𝜃𝐴, 𝑢𝐴)

𝜋 𝑎 𝑠, I𝐵 ; 𝜃𝐵 , 𝑢𝐵)

Shared situation

𝜃∗

shared knowledge

𝑢∗

shared value

shared policy
𝜋∗

communication

Each ellipse represents a mental state
and has 4 components:

1. Belief 
– perceived states of the world

2.    Model
– concepts and knowledge

3. Policy
– action and plans

4. Value
– gains and losses, to derive goals

Cognitive Architecture for Human-Machine Communication 



Entering radioactive area Detecting hazards

Defusing bombs

These robots are teleoperated with little to no autonomy

Robots must be able to grasp human’s intentions and values of the

task in real-time. Also, clearly elucidate decision-process for

human understanding and trust.

Autonomous robots in these domains will increase greater operator 

flexibility and mission scale

Scenarios Requiring Bidirectional Human-Robot Value AlignmentScenarios Requiring Bidirectional Human-Robot Value Alignment



User-machine task setting

• A human-robot team is trying to find a safe
path crossing an unknown terrain from the 
bottom right to the top left

• Additional goals may be achieved:

• Find the path as fast as possible

• Collect extra resources

• Defuse bombs in the map

• Detect as much region as possible

Prototypical Setting: Scout Exploration Game



User-machine task setting

• The robots act as scouts to explore potential 
bombs and communicate with user.

• User can accept or reject proposals from the 
robot scouts 

• Requires bidirectional human-robot
alignment

• Understanding human values by
proposals

• Elucidate self by providing proper
explanations

Prototypical Setting: Scout Exploration Game

Which plans
are aligned 

with my 
goals?



Task Specification

• Only the scouts are interacting with the physical states via actions/observations

• Human has hidden information that the scouts need to finish the task

• Human can only interact with a centralized agent which controls all the scouts 

……



Scout Exploration Game Design

• Infer the importance of the
goals and values through
communication with the
human

• Control scouts to interact with
the environment via action &
observation

• Knows the importance of the
goals

• Knows about the map via
robots’ messages & instructs
robots to act



Scout Exploration Game Design

• Knows the importance of the
goals

• Can only infer the importance
of the goals through
communication with the
human

• Directly control scouts to 
interact with the environment
via action & observation

• Knows about the map via
robots’ messages & instructs
robots to act

Inform about the state

Inform about goals and value



The Need for Explanation

• Asymmetric information between human and robot
• Robots have access to additional sensing information

• Human has access to value function

• Scouts providing state information → high human cognitive burden

• Scouts providing actions proposals → some cognitive relief

• Scouts providing explanations → greater cognitive relief 

• Improving user-machine task performance, and scaling up the team.



Computational Framework

Explainer

Planner

Mental Model

Proposal, State Info.
Explanation

Proposal
Action

Observation

Feedback

Proposals aligned with
user value are more
likely to be accepted

Beliefs

Pre-Feedback

Post-Feedback

Processed
Feedback:
MLE wrt. 𝜃

Feedbacks serve
pedagogical purpose





Agent Representation

Robot’s 
estimate of 
Human value

Robot’s 
Plan

Robot’s Policy

Robot belief  

Robot’s estimate 
of Human’s belief

Human estimate 
of Robot Value Human Value

Human Plan

Human Belief

Explanation, Information, Proposals, Actions

Commands, Answers, Decisions





Value Function

The importance of goals are modeled as a value function:
• Given robots action sequence, the task has certain measurements, each corresponds

to a goal:
• Total time used 𝜙𝑇

• Number of resources collected 𝜙𝑅

• Number of bomb defused 𝜙𝐵

• Number of grids detected 𝜙𝐷

• ….                                                       𝜙𝑖

• The performance of the task is a value defined by the importance of each goal
• The more important a goal is, larger the corresponding dimension of 𝜃 is

< 𝜃𝑇 𝜙 > = < 𝜃𝑇 , 𝜙𝑇 > + < 𝜃𝑅 , 𝜙𝑅 > + < 𝜃𝐵 , 𝜙𝐵 > + < 𝜃𝐷 , 𝜙𝐷 > + …

𝜃 1 = 1



Game Engine Progress

Scouts initialized 



Game Engine Progress

Scouts begin searching area



Game Engine Progress

Suspicious device detected



Game Engine Progress

Bomb detected



Game Engine Progress

Exploration continues



Game Engine Progress

Goal discovered



Game Engine Progress

Second bomb detected



Panel Introduction – Legend



Panel Introduction – Value Function



Panel Introduction – Map



Panel Introduction – Score



Panel Introduction – Status



Panel Introduction – Proposals



Panel Introduction – Explanations
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Scout Exploration Game

R: Propose

R: Explain

H: Feedback

R: Adapt

R: Plan
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Information group

Robot only provides 
information regarding 
detections from the map

Human user instructs 
robot what to do

Proposal group

Robot provides map 
information and actively 
proposes possible plans

Human user ranks or 
accepts proposals

Explanation group

Robot provides map 
information, proposals 
and explanations for 
those proposals

Human user ranks or 
accepts proposals







Q & A
Thank you!


