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Abstract

Without explicit feedback, humans can rapidly

learn the meaning of words. Children can ac-

quire a new word after just a few passive expo-

sures, a process known as fast mapping. This

word learning capability is believed to be the most

fundamental building block of multimodal under-

standing and reasoning. Despite recent advance-

ments in multimodal learning, a systematic and

rigorous evaluation is still missing for human-

like word learning in machines. To fill in this

gap, we introduce the MachinE Word Learning

( MEWL) benchmark to assess how machines

learn word meaning in grounded visual scenes.

MEWL covers human’s core cognitive toolk-

its in word learning: cross-situational reasoning,

bootstrapping, and pragmatic learning. Specif-

ically, MEWL is a few-shot benchmark suite

consisting of nine tasks for probing various word

learning capabilities. These tasks are carefully

designed to be aligned with the children’s core

abilities in word learning and echo the theories in

the developmental literature. By evaluating multi-

modal and unimodal agents’ performance with a

comparative analysis of human performance, we

notice a sharp divergence in human and machine

word learning. We further discuss these differ-

ences between humans and machines and call for

human-like few-shot word learning in machines.
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I know it!

This is a daxy tufa.

This is a hally tufa.

daxy

hally

Let’s learn some 

new words!

Figure 1: Illustration of few-shot word learning. Children can ac-
quire a novel word after only few exposures using cross-situational
information, even with referential uncertainty. In this example, a
child induces that daxy refers to the color green and hally magenta,
all from the experience of a daxy tufa (green cylinder) and a hally
tufa (magenta cylinder) without explicit guidance.

1. Introduction

Learning words and a language is one of the most funda-

mental stages of human cognitive development, serving

as the foundation for other crucial capabilities that come

later, such as learning new object categories, forming ab-

stractions of conceptual structures, making generalizations,

and developing the ability to communicate (Lake & Mur-

phy, 2021; Murphy, 2004; Smith & Gasser, 2005; Tenen-

baum et al., 2011). Remarkably, we acquire the meaning of

words rapidly and effortlessly, even without explicit feed-

back (Bloom, 2001). One striking observation is that young

children can understand a novel word’s meaning merely

from a few examples, also known as fast mapping (Carey

& Bartlett, 1978; Heibeck & Markman, 1987); a child can

learn about 12 words per day by the age of eight (Bloom,

2002). These quickly learned words constitute our under-

standing of the world and the basis of symbol representation

for concepts.

Human learning is inherently few-shot and open-ended,

even without explicit guidance (Landau et al., 1988; Lake

et al., 2015). Children experience substantial referential am-

biguity while learning new words, yet they are nevertheless
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able to comprehend the word-referent mappings; see Fig-

ure 1 for an illustration. How can we learn so many words

from so little? Prior developmental studies indicate these

capabilities come in many ways.

• We learn words from co-occurrence in multiple contexts

(Scott & Fisher, 2012). Children are young statisticians

(Gopnik et al., 1999; Abdulla, 2001); they employ cross-

situational statistics (Smith & Yu, 2008) and perform

Bayesian-like inference (Tenenbaum, 1998) to understand

the meaning of words from multiple scenes (Xu & Tenen-

baum, 2007).

• We leverage semantic and syntactic cues to bootstrap

novel word learning (Quine, 1960; Pinker, 2009). For

instance, we can use familiar relational words to infer an

unknown word’s meaning: hearing beef and dax, we may

infer that dax is a noun and edible; it may represent a

similar kind of food to beef.

• We comprehend word meanings with pragmatics, a so-

cial account of word learning with the help of other speak-

ers. The fundamental premise is to leverage informative

descriptions of the referent (Frank & Goodman, 2014;

Horowitz & Frank, 2016; Stacy et al., 2022). For example,

if we have a blue cube, a blue ball, and a green cube in a

line, a speaker would use the word ªballº to refer to the

object in the middle, which is the most informative word

to tell them apart (Frank & Goodman, 2012).

Human-like word learning is quintessential towards building

machines that learn and reason like people (Lake et al., 2017;

Zhu et al., 2020; Fan et al., 2022). Despite recent develop-

ment in language-only and vision-language pre-training, it

is still unknown if these models acquire word meaning in a

manner similar to that of humans (Lake & Murphy, 2021;

Bender & Koller, 2020; Mitchell & Krakauer, 2023). Con-

cerns have been raised regarding the pre-training paradigm’s

inability to capture the core components of human language

and conceptual structure, such as compositionality (Thrush

et al., 2022), concept association (Yamada et al., 2022),

relational understanding (Conwell & Ullman, 2022), and

conceptual meaning (Piantasodi & Hill, 2022). These con-

cerns can be linked to the differences in how humans and

machines acquire the primitives of words (Fodor et al., 1988;

Tenenbaum et al., 2011). To the best of our knowledge, a

systematic and rigorous evaluation for human-like word

learning in machines is still missing.

To fill in this gap, we devise the MachinE Word Learning

( MEWL) benchmark to assess machine word learning in

grounded visual scenes, covering human’s core cognitive

toolkits in word learning. MEWL serves as a testbed for

few-shot vision-language reasoning with referential uncer-

tainty. It includes nine tasks covering four types of scenarios:

basic attribute naming, relational word learning, number

word learning, and pragmatic word learning.

We build MEWL in the CLEVR universe (Johnson et al.,

2017). Each MEWL problem consists of six context im-

ages and corresponding descriptive novel words or phrases

(i.e., utterances). Agents (either humans or learning algo-

rithms) are tasked to rapidly understand the meaning of

novel words from context and choose the option that best

matches the target query image. These settings closely

mimic children’s fast cross-situational word learning (Good-

man et al., 2007; Smith et al., 2011; Carey & Bartlett, 1978).

In experiments, we deploy MEWL to analyze machines’

and humans’ ability to perform few-shot word learning

under the nine scenarios. We first benchmark machines

on MEWL by analyzing multimodal (i.e., pre-trained

vision-language) and unimodal models (i.e., Large Lan-

guage Models (LLMs)). Our experimental results indicate

that pre-trained vision-language models struggle to learn

word meaning with only a few examples, lagging far behind

what humans can do. For LLMs, we turn the word learn-

ing problem into a concept binding problem, formulated

as in-context learning with images captioned into texts and

utterances as labels. LLMs perform well on attribute and

object naming tasks but far worse on all others. Next, we

benchmark human performance on MEWL for compari-

son. A comparative analysis reveals misalignment between

humans and machines. Finally, we analyze and compare uni-

modal and multimodal learning algorithms using the rubrics

of human-like word learning.

This paper makes three primary contributions:

1. We highlight the significance of human-like word learn-

ing in machines. To support this claim, we devise

MEWL for probing and comparing few-shot word

learning capabilities in machines and humans.

2. We craft MEWL to ensure its similarity to the human

counterpart in learning new words. MEWL consists

of nine tasks, all directly inspired by the established

findings in human word learning.

3. We present a comprehensive benchmark of multimodal

and unimodal models on MEWL. A comparative anal-

ysis of the experimental results shows that large models

are generally not human-like in few-shot word learn-

ing, calling for future research on building human-like

machine models on word and language understanding.

2. Related work

Word learning in machines Despite extensive studies in

human word learning, how machines acquire word meaning

is almost untouched. Recent attempts use infants’ egocentric

videos in SAYCam (Sullivan et al., 2022) and deep learn-

ing methods to mimic children’s word learning experience

(Orhan et al., 2020; Vong et al., 2021; Rane et al., 2022;

Berger et al., 2022; Vong & Lake, 2020; Frank et al., 2017;
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Table 1: Comparison between MEWL and prior arts. We compare MEWL and related benchmarks in six dimensions: multimodal-
ity, few shot, referential uncertainty, relational reasoning, pragmatic reasoning, and human baseline.

multimodal few-shot uncertainty relation pragmatic human

CLEVR (Johnson et al., 2017) ✗ ✗ ✗ ✓ ✗ ✓

RAVEN (Zhang et al., 2019a) ✗ ✓ ✗ ✓ ✗ ✓

NLVR (Suhr et al., 2017) ✓ ✗ ✗ ✓ ✗ ✓

KiloGram (Ji et al., 2022) ✓ ✗ ✗ ✗ ✗ ✓

CURI (Vedantam et al., 2021) ✓ ✓ ✓ ✓ ✗ ✗

Fast VQA (Tsimpoukelli et al., 2021) ✓ ✓ ✓ ✗ ✗ ✗

MEWL (ours) ✓ ✓ ✓ ✓ ✓ ✓

Wang et al., 2022; Zhuang et al., 2021). While most of

these works focus on reverse-engineering the human word

learning process, few supporting benchmarks or tasks probe

machines’ few-shot word learning capabilities.

Notably, Horst & Hout (2016) introduces the Novel Object

and Unusual Name (NOUN) dataset for experimental re-

search. This dataset is relatively small in size (64 images);

nonetheless, it supports building word learning algorithms in

machines (Krishnamohan et al., 2020; Vong & Lake, 2022).

In vision-language learning, Tsimpoukelli et al. (2021) in-

troduces Fast VQA, which presents fast concept binding as

a new evaluation task for few-shot vision-language models.

In comparison, the proposed MEWL benchmark has three

distinctions.

1. MEWL focuses not only on basic object categories but

also on attribute, relational, numerical, and pragmatic

word learning, offering a significantly more comprehen-

sive benchmark suite in human-like word learning.

2. MEWL is akin to human word learning with referential

uncertainty, where cross-situational learning is required.

This particular setting is almost untouched but is at the

core of human-like few-shot word learning.

3. Similar to other visual reasoning tasks (Johnson et al.,

2017; Barrett et al., 2018; Depeweg et al., 2018; Ed-

monds et al., 2018; 2019; 2020; Zhang et al., 2019a;b;

2021a;b; 2022a; Nie et al., 2020; Zhang et al., 2020;

Xie et al., 2021; Vedantam et al., 2021; Xu et al., 2022;

Li et al., 2022a; 2023), MEWL is light in visual per-

ception but richer in context. It has 37,800 questions, a

significantly larger benchmark suite compared to 2,500

in Fast VQA and 64 in NOUN.

In a nutshell, we regard MEWL as the first systematic and

rigorous benchmark suite for machine word learning.

Human-like few-shot learning Children are few-short

learners, learning the meaning of new words after merely a

single or few exposures (Carey & Bartlett, 1978; Heibeck &

Markman, 1987). Modern benchmarks include various few-

shot reasoning problems, including the Omniglot challenge

(Lake et al., 2015; 2019b), intelligence measurements (Bar-

rett et al., 2018; Zhang et al., 2019a; Chollet, 2019; Zhang

et al., 2020), Bongard problems (Depeweg et al., 2018; Nie

et al., 2020), causal reasoning (Edmonds et al., 2018; Zhang

et al., 2021a; Xu et al., 2022), and generalization tasks (Lake

& Baroni, 2018; Lake et al., 2019a; Vedantam et al., 2021;

Xie et al., 2021; Hsu et al., 2022; Li et al., 2022b; 2023).

However, these few-shot reasoning problems do not directly

tackle the human-like multimodal crux in word learning.

Conversely, modern multimodal abstract reasoning bench-

marks (Kuhnle & Copestake, 2017; Suhr et al., 2017; Ji et al.,

2022) are not few-shot by design. MEWL perfectly fills

in this gap as a testbed of few-shot multimodal word learn-

ing with referential uncertainty. It requires cross-situational

grounding of novel words to the learned visual concepts via

bootstrapping and pragmatic reasoning. Table 1 provides a

comprehensive comparison of MEWL with prior arts.

3. Creating MEWL

When creating MEWL, we draw inspiration from and cor-

respondingly highlight these methods in human word learn-

ing: cross-situational learning, bootstrapping, and pragmatic

word learning. We design nine unique tasks in MEWL

to comprehensively evaluate alignment between humans

and machines: shape, color, material, object,

composite, relation, bootstrap, number, and

pragmatic. These tasks cover various aspects:

• Learn novel words or phrases that represent basic object

attributes (i.e., shape, color, and material), the

objects per se (i.e., object), and the composition of

basic attributes (i.e., composite).

• Use familiar words to bootstrap learning novel (spatial)

relational words (i.e., relation) or vice versa (i.e.,

bootstrap).

• Learn counting and number words from one to six (i.e.,

number).

• Use pragmatic cues to learn novel words by assuming the

speaker is informative (i.e., pragmatic).

These tasks are crafted to be aligned with the core building

blocks in human word learning and echo the theories in the

developmental literature (Carey & Bartlett, 1978; Pinker,

2009; Bloom, 2002; Scott & Fisher, 2012; Smith et al.,
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Shape: Context Query

bleun enson bleun

upside upside enson

What is this?

❌ bleun

❌ upside

❌ parings

✅ enson

❌ mao

Concept: bleun ⇔ cube, upside ⇔ sphere, enson ⇔ cylinder

Bootstrap: Context Query

curldis right larlalight erimcol front minfacsen erimcol left fullaies

erimcol left larlalight minfacsen front cueldis minfacsen right larlalight

What is this?

❌ cueldis right erimcol

❌ larlalight left posmisfa

❌ fullaies behind posmisfa

✅ cueldis front fullaies

❌ larlalight right fullaies

Concept: cueldis ⇔ red metal cube, erimcol ⇔ red glass cylinder, larlalight ⇔ purple rubber sphere, minfacsen ⇔ blue glass cube

Pragmatic: Context Query

ecle supri thepi

imvi gentic ernfer

What is this?

❌ ecle

❌ supri

✅ thepi

❌ imvi

❌ gentic

Concept: ecle ⇔ blue, supri ⇔ large, thepi ⇔ cyan, imvi ⇔ red, gentic ⇔ glass 

Number: Context Query

alfa ketder lecap

setber tlemar yman

What is this?

✅ yman

❌ ketder

❌ alfa

❌ tlemar

❌ setber

Concept: yman ⇔ five, ketder ⇔ two, alfa ⇔ one, tlemar ⇔ four, setber ⇔ three 

Figure 2: Overview of the four categories of tasks in MEWL: (i) basic naming (e.g., shape), (ii) bootstrap relational word learning
(e.g., bootstrap), (iii) learning number words (e.g., number), and (iv) pragmatic word learning (i.e., pragmatic). Each episode
consists of six context images and corresponding utterances. Agents need to choose the correct utterance matching the query image out of
the given five options based on cross-situational reasoning from the six context panels. Ground-truth word-to-concept mappings are listed
below examples (utterance ↔ concept). Please refer also to Appendix E for additional examples of the nine tasks.

2011; Horowitz & Frank, 2016; Frank & Goodman, 2014);

we detail the setting of each task in Section 3.1. As such,

MEWL constitutes a comprehensive suite for probing

how machines learn words’ meaning across various few-

shot scenarios with referential uncertainty. In MEWL, all

nine tasks involve referential uncertainty at varying extents

and must be resolved from cross-situational disambiguation.

We use the same referential uncertainty concept defined in

previous word learning literature: ªFor any heard name,

there are many candidate referents with variable perceptual

propertiesº (Yu et al., 2021).

MEWL includes 27,000 problems for training, 5,400 prob-

lems for validation, and 5,400 problems for testing.2 These

problems are evenly divided among the nine tasks. As

shown in Figure 2, each few-shot problem is an episode

consisting of seven images, each containing a few randomly

positioned objects. Among them are six context images;

each has an utterance consisting of a novel word/phrase

describing the image. After seeing context images, a query

image is presented with five candidate utterances, with one

answer that correctly describes the scene, and therefore for-

mulated as a multiple-choice problem. Following CLEVR

2In theory, our environment for building MEWL allows for
the creation of infinite problems. As a result, one can take advan-
tage of this environment and train a foundation model for word
learning. However, we contend that this is not how MEWL
is meant to be used, as the primary objective is to examine the
few-shot capability in machine word learning.

(Johnson et al., 2017), images are rendered at a resolution

of 320× 240 with the Blender Cycles engine (Community,

2016). Apart from all CLEVR universe objects, we incorpo-

rate a glass material for more diversified textures, expanding

the space for the material task. We also include a syn-

thetic yellow rubber hand as the pragmatic pointer for the

pragmatic task. We refer the readers to Appendices A

and E for additional details and task examples of MEWL.

To assess the word learning capability in the context of

few-shot instead of plain memorization, we create novel

words unlikely to be genuine words in the English corpus

across episodes. Specifically, we use the 175 most com-

mon syllables in the English language to generate more

than 5 million pseudo words and associate them with the

concepts in the images. Trisyllabic words are generated

for object, composite, relation, and bootstrap

tasks, whereas bisyllabic words are generated for shape,

color, material, number, and pragmatic. As the

words and concepts vary across episodes, the same word

can be bound to different concepts in different problems;

we assume mutual exclusivity: different novel words have

different meanings in each episode (Merriman et al., 1989).

3.1. MEWL tasks

shape This task tests agents’ understanding of novel

words for shape concepts from the context panels. MEWL

has three shapes: cube, sphere, and cylinder. To create word-

shape mapping, we randomly assign three unique novel
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words to the shapes in each episode. When generating con-

text, every context image has one object and a corresponding

word as the utterance. Moreover, we control the object’s

shape to ensure it matches the utterance and leaves other

properties (color, size, material) uniformly sampled. For the

query panel, we choose one shape for testing. Agents are

required to choose the correct word for the shape from the

five options that include two distractors.

color Similar to the classic fast mapping experiment on

children (Carey & Bartlett, 1978; Sandhofer & Smith, 1999),

this task studies learning novel words representing colors.

MEWL has eight distinctive colors: gray, red, blue, green,

brown, purple, cyan, and yellow. We randomly sample three

colors out of eight to appear in each episode. Other settings

remain the same as in shape.

material We keep most of the settings unchanged from

shape when designing this task. Instead of naming colors,

we name three distinct materials: rubber, metal, and glass.

object Learning with referential uncertainty is challeng-

ing. Inspired by previous studies on infants (Smith & Yu,

2008; Smith et al., 2011; Vong & Lake, 2022), this subset

of MEWL probes the agents’ ability of cross-situational

word learning for objects. In this task, novel words bind

to the objects per se (i.e., the quadruple of size, color, ma-

terial, and shape). Unlike the shape task, each image

in object has three objects and is paired with an utter-

ance consisting of three words. Moreover, an episode has

six unique word-object mappings, just within the working

memory limit for humans (Miller, 1956). Because there

is no one-to-one mapping from the words to objects in an

image, agents must perform cross-situational reasoning to

determine the correspondence between words and objects.

composite This task focuses on learning compositional

multi-word phrases and uses syntax to bootstrap the word

learning process. In detail, novel words represent basic at-

tributes (i.e., shape, color, and material), and phrases share

the same syntax in an episode. The syntax can be any binary

combination of the three types of attributes (e.g., the first

word represents color, and the second shape). We use the

simplified syntax here because syntactic bootstrapping can

accelerate the learning of new words (Abend et al., 2017;

Gleitman, 1990). In accordance with the syntax, we selec-

tively name two types of attributes out of three (e.g., color,

shape), followed by randomly choosing three instances (e.g.,

cyan, blue, yellow) for each type of attribute, resulting in

a lexicon size 3 + 3 = 6. To succeed in this task, agents

also need to possess systematic generalization because the

answer may contain attribute combinations not shown in the

context.

relation In this task, we probe agents’ capability of

learning relational words (i.e., left, right, front, and behind).

In humans, the understanding of spatial and temporal words

is acquired later than object-centric words (Friedman &

Seely, 1976). As temporal words are challenging to eval-

uate in most models, we only investigate spatial relation

words in MEWL. To construct spatial relations, we place

three objects (with one distractor) in an image and use two

familiar English phrases to refer to objects and a novel spa-

tial relation word in between to represent objects’ relation

(e.g., ªcyan cube dax red sphereº). We also replicate the am-

biguity when children acquire spatial words. For example,

ªdaxº can refer to left or front when inferring from a single

image; agents must employ cross-situational reasoning to

determine the exact meaning of the spatial words. We de-

sign each novel word to appear twice to ensure the problem

is solvable. For example, from both left behind and left

front, we understand ªdaxº means left. Hence, an episode

only uses three spatial words, leaving one spatial relation

untouched.

bootstrap Recall that we use syntactic cues to boot-

strap the learning of attribute words in composite. In this

bootstrap task, we flip the direction by inferring objects’

names using familiar relational words. We include all four

spatial relation words (i.e., left, right, front, and behind) and

use novel words to represent objects (similar to the setting

in object). Each image includes three objects (with one

distractor), and the utterance includes relations as cues (e.g.,

ªtufa behind daxº). Agents are tasked to learn the meaning

of the six novel words with the help of relational description

and choose the correct answer from the five options.

number Acquiring numerical words is a giant leap in

children’s word learning. Instead of acquiring the cardinal

principle (the ability to count to infinity, usually acquired at

an older stage), we only consider basic learning of counting

words (Wynn, 1990; Fuson, 2012; Piantadosi et al., 2012).

This task focuses on how to learn the numerical words, from

one to six. As such, we design the six context images to

contain different numbers of objects, ranging from one to

six. Each utterance is a unique novel word corresponding

to the number of objects in the scene. The query panel

includes a random number of objects. To solve the problem,

agents need to count how many objects are in the scene and

determine the word-number mapping.

pragmatic A critical account in children’s word learn-

ing is a social-pragmatic theory (Tomasello, 2000). Chil-

dren learn words not only from the cross-situational or lin-

guistic constraints demonstrated in previous tasks but also

from inferring communicative intents. In this pragmatic

task, we inspect this pragmatic word learning capability in

machines. Inspired by previous studies on human (Frank

& Goodman, 2012; 2014; Fay et al., 2010; 2014; 2018;

Horowitz & Frank, 2016; Jiang et al., 2021; 2022; Chen

et al., 2021; Qiu et al., 2022), we design a pragmatic word
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learning scenario using rendered hands to represent prag-

matic pointing. Specifically, every image has a set of three

objects and a finger pointing to a referred one, such that the

referred object has a unique attribute that can be identified

from the context. For example, the targeted object is a cube

while the other two are cylinders. In this case, an informa-

tive speaker should use the term ªcubeº instead of ªlarge

cyan metal cubeº to refer to this object. In pragmatic, we

select six attributes from all available attributes (two sizes,

eight colors, three materials, and three shapes) and associate

them with unique names. Each of the six context images is

paired with a novel attribute word, and we randomly select

one attribute to test in the query image.

For all tasks, we provide the following ground-truth scene

information: task name, answer choice, word-to-concept

mapping, object types, and coordinates (bounding boxes).

pragmatic is additionally labeled with the pointed object.

4. Word learning with MEWL

To probe human-like word learning in artificial agents, we

examine contemporary models on MEWL. Formulating

MEWL as a few-shot vision-language learning problem,

we choose models that fall into two categories: multimodal

(vision-language) and unimodal (language-only) models.

Please refer to Appendix C.1 for additional details on model

implementation.

4.1. Multimodal models

As MEWL can be viewed as a vision-language task, we

test representative multimodal models: pre-trained vision-

language models and models with object-centric embedding.

CLIP Contrastive language-image pre-training (CLIP) on

large-scale image-caption pairs produces embeddings in a

joint image-text embedding space (Radford et al., 2021),

showing superb performance on tasks such as zero-shot

classification. We take CLIP’s pre-trained vision and text

encoder (i.e., CLIP (w/ TE)) to extract features from input

images and texts. These features are passed to a Transformer

model for classification. We also train a model without using

CLIP’s pre-trained text encoder (i.e., CLIP (w/o TE)).

Flamingo-1.1B Flamingo (Alayrac et al., 2022) is de-

signed to tackle few-shot vision-language tasks. It aligns

pre-trained vision and language models by training on large-

scale multimodal data. Due to its limited availability, we

fine-tune an open-sourced 1.1B version, built on the OPT-

350M (Zhang et al., 2022b) and CLIP (ViT-L/14) (Radford

et al., 2021), pre-trained on the Conceptual Captions (3M)

dataset (Sharma et al., 2018).

Aloe As all the word learning tasks in MEWL are object-

based, we additionally test Aloe (Ding et al., 2020), which

uses the Transformer architecture to make predictions based

on the learned object embeddings and has demonstrated

outstanding performance on previous synthetic visual rea-

soning tasks (Yi et al., 2019; Girdhar & Ramanan, 2019;

Zhang et al., 2021a). Therefore, we adopt Aloe in MEWL

with object embeddings learned from MONet (Burgess et al.,

2019).

4.2. Unimodal models

LLMs have been proven to be strong reasoners with few-

shot learning abilities. Hence, we test models based on a

caption-then-classify paradigm. First, we use a task-specific

oracle captioner to parse the input visual scene to gener-

ate a scene description. Next, we use language models

(i.e., GPT-3.5 (Brown et al., 2020) and BERT (Devlin et al.,

2018)) to classify the result as a multiple choice problem.

Of note, such captions are injected with inductive biases

that are precisely needed to solve those tasks, having less

uncertainty and ambiguity than images used in the multi-

modal model. This design drastically simplifies the task

difficulty, as it is easier for the unimodal model to map syn-

tactic patterns in the captions to the answer. Specifically,

inspired by Yang et al. (2021), we prompt GPT-3.5 with a

zero-shot multiple-choice template based on full captions

generated for the context scenes and the query. We also

fine-tune a BERT model on ground-truth captions, resulting

in a learned mapping from captions to the answer. Please

refer to Appendix B for additional details.

5. Experiments

We examine few-shot word learning ability by experiment-

ing with machine models and human participants on the

proposed MEWL benchmark.

5.1. Experimental setup

The dataset consists of nine tasks for comprehensively eval-

uating agents’ word learning capabilities. All models except

GPT-3.5 are trained on the training sets of all tasks. We re-

port the model performance on the test sets. All experiments

run on eight NVIDIA A100 80GB GPUs. GPT-3.5 model

is accessed via the OpenAI API (text-davinci-003)

with temperature t = 0.

5.2. Human study

To establish a strong baseline to compare with the machines,

we looked at how humans performed on the MEWL

benchmark; this study was approved by the Institutional

Review Board (IRB) at Peking University. We designed

questionnaires for the human study based on Qualtrics.

Nine questionnaires were constructed, each of which cor-

responds to a task. To familiarize participants with our

study, the Qualtrics workflow first walked them through a

step-by-step tutorial. Next, participants were administered

6



MEWL: Machine word learning

Table 2: Performance of baseline models and humans on MEWL.

Models shape color material object composite relation bootstrap number pragmatic Avg.

CLIP (w/o TE) 16.2 18.0 19.3 17.0 22.2 20.8 18.7 19.2 20.2 19.1

CLIP (w/ TE) 22.0 18.8 21.0 21.2 15.0 17.8 21.0 19.5 21.5 19.8

Aloe 34.2 33.2 31.0 19.5 30.5 21.5 27.5 23.3 20.8 26.8

Flamingo-1.1B 49.3 35.3 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0

BERT 94.8 98.8 97.5 19.5 97.8 22.2 62.2 21.8 99.8 68.3

GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1

Human 92.4 87.2 72.7 79.1 63.5 48.7 71.0 93.9 54.8 73.7
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Figure 3: Visualization of agents’ performance on MEWL.

tests and attention checks to ensure they comprehended the

background and task settings. Specifically, ten questions

and two attention check questions are randomly selected

from the MEWL test set and shuffled in each question-

naire. Attention check questions were designed with a query

image identical to one of six context images. Participants

who failed these questions or checks were removed.

A total of 271 participants (169 female, mean age 42.8) from

the US and UK were recruited from Prolific, an online par-

ticipant pool, to complete the aforementioned nine tasks and

were paid an hourly wage of £6, with a bonus of £0.25-£2.

Of the 271 responses collected, 1 failed in familiarization,

52 were removed due to attention check failures, 1 outlier

was not counted, and 217 were valid and included in the

analysis below. For each of the nine tasks, every participant

was presented with a randomly drawn ten-question subset

from the task’s test set. Please see also Appendix D for

additional details on data processing and significance tests.

5.3. Results and analysis

Table 2 summarizes the performance of both machines and

humans, with result visualization in Figure 3.

Multimodal models Overall, the best vision-language

model is Flamingo-1.1B (41.0%), only about half as com-

petent as humans (73.2%). Meanwhile, vanilla transformer

models with CLIP features fail catastrophically, achieving

only random-level performance on all tasks (less than 20%).

Aloe’s object-centric representation helps improve perfor-

mance to 26.8% but may fare worse due to limited model

capacity and lack of pre-training.

Peeking into task-specific results, we observe that vision-

language pre-trained models perform relatively well

on basic attribute naming tasks (i.e., shape, color,

material) but fail to generalize to object relations and

reason with pragmatical cues. One interesting observation

is that the Flamingo model can solve a small proportion of

bootstrap tasks and some number tasks. This result

may be attributed to the Flamingo model being language-

model-based, capturing syntactic cues and understanding

familiar words to bootstrap word learning.

Unimodal models As for unimodal language models,

fine-tuned BERT has the best overall performance, with

an average performance of 68.3%. Both BERT and GPT-

3.5 achieve outstanding performance on object-level tasks

7
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(i.e., shape,color, material,object, composite,

bootstrap), yet fail on tasks that require an understand-

ing of more complex relations beyond one-to-one mapping

(i.e., relation, number). Fine-tuned on the training set,

the BERT model also performs well on the pragmatic

task, whereas GPT-3.5 (without fine-tuning) fails, indicat-

ing that certain capabilities can indeed be learned through

task-specific fine-tuning. However, we also want to point

out that detailed captions, with strong human bias injected,

have been used: We give object-centric captioning to basic

attribute naming tasks, relative spatial relations to relational

tasks, and the ground-truth pointing to pragmatic tasks. In

this sense, the problem is simplified into a translation-like

problem, and the challenge of concept abstraction in human

word learning is circumvented.

Human performance Based on 217 valid responses, our

human study suggests that MEWL is well-designed and

reflects core cognitive skills humans use for word learning.

For example, we observe that humans have decent perfor-

mance on basic naming tasks, with performance ranked

shape ≈ color > material > composite, which

echos prior psychological findings of shape bias (Landau

et al., 1988) and fast mapping (Heibeck & Markman, 1987).

Humans also perform counting effortlessly. Relational and

pragmatic word learning tasks are more challenging than

others; relational words often do not have referents to ob-

jects, and it is also known to be acquired at the later stage of

development (McCune-Nicolich, 1981; Gentner, 2005). Our

human study provides a critical reference for what human-

level word learning should demonstrate on MEWL.

6. Discussion

6.1. Multimodal vs. unimodal

Comparing multimodal models (i.e., CLIP, Flamingo, and

Aloe) and unimodal models (i.e., GPT-3.5 and fine-tuned

BERT), we observe that text-based models with ground-

truth captioning generally outperform pixel-based ones.

This observation in machines seems counter-intuitive as it

contrasts with the empirical observations and computational

studies on human multimodal learning, which argue that

multi-modality boosts the acquisition of words and concepts

(Clark, 2006; Smith & Gasser, 2005). Why and how do

contemporary unimodal agents outperform multimodal ones

in few-shot word learning? We present some preliminary

discussions on this phenomenon in the following.

First, we believe that part of the conceptual role, not all

of it, in unimodal language models may be acquired in a

way different from humans. Recently, some studies have

shown that large language models can encode human-like

conceptual structures, even perceptual ones, from unimodal

training data (Piantasodi & Hill, 2022; Abdou et al., 2021),

which are confirmed by experiments on human neural sys-

tems (Bi, 2021). In our experiments, GPT-3.5 successfully

achieves comparable performance on some basic attribute

naming tasks (i.e., color, material, shape, object,

and composite) and yet fails to learn complex relational

words (i.e., number, relation), indicating it already has

some conceptual knowledge of shapes, colors, and materials

from unimodal training. Nevertheless, GPT-3.5 fails to learn

with pragmatic cues, supporting the claim that text-based

models cannot infer the communicative word meaning with-

out perceptual grounding (Lake & Murphy, 2021). This

leads to the quest for perceptually grounded word learning

in machines, to which our MEWL contributes.

Second, the unimodal version of MEWL is similar to the

ªQuine’s Gavagai Problemº (Quine, 1960). Since we use

ground-truth captioners specifically designed for each task,

the unimodal language models do not need to undertake

the original word learning as humans do with concept in-

duction. Instead, they acquire the meaning of the novel

words via few-shot translation from familiar English words,

dramatically reducing the difficulty and ambiguity of multi-

modal word learning. In other words, the unimodal setting

is not comparable with the multimodal one. From the ex-

periment of fine-tuning the BERT model, some tasks that

do not require complex cross-situational reasoning can be

solved with satisfactory performance. By simplifying the

problem as unimodal translation, fine-tuning a unimodal

model transforms it into a pattern recognition problem, find-

ing hidden statistical patterns from the training data without

acquiring actual human-like few-shot word learning capabil-

ities. Hence, we suggest that future work shall not perform

specific fine-tuning on the unimodal captioned version of

MEWL for improving performance but instead use it to

compare unimodal and multimodal models.

6.2. Humans vs. machines

Efficacy of MEWL The results of human studies echo

previous established developmental studies on human word

learning, e.g., the shape bias (Landau et al., 1988) and the

shape ≈ color > texture (material) relative preference in fast

mapping (Heibeck & Markman, 1987), indicating that our

design of MEWL indeed captures the essence of human-

like word learning.

Failure of learning models Experiments with contem-

porary machine learning models show that they fail to

demonstrate human-like word learning capabilities in var-

ious tasks. Most multimodal models fail catastrophically,

reaching chance-level performance. Some cross-attention

vision-language or object-centric models show relatively

better performance on specific subtasks. Nonetheless, they

still do not match overall human word learning capabilities.

Although unimodal large language models achieve outstand-
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ing performance on basic naming tasks but fall short in

capturing relational and pragmatic word learning. In ba-

sic attribute naming tasks, large language models do not

show human-like learning (e.g., shape versus texture bias

(Geirhos et al., 2018; Tartaglini et al., 2022). Crucially, the

unimodal paradigm fundamentally differs from human-like

multimodal word learning.

Why should machines have human-like word learning

capabilities? Few-shot word learning is one of the most

basic human multimodal reasoning capabilities; it serves as

the first step for language acquisition and facilitates learning

concepts (Clark, 2006). Although recent large-scale vision-

language contrastive pre-training (Radford et al., 2021) can

be viewed as an approximate form of learning from refer-

ential uncertainty, it still diverges much from human-like

learning: e.g., the failure in social-pragmatics word learn-

ing (pragmatic task in MEWL and Lake & Murphy

(2021)), difficulty in acquiring numerical and relational

words (number and relation tasks in MEWL, Rad-

ford et al. (2021), and Conwell & Ullman (2022)), inability

to understand compositionality (Thrush et al., 2022), and

concept association bias (Yamada et al., 2022). These prob-

lems put it on display that current learning paradigms can-

not capture the word meaning in a way similar to humans,

leading to an alignment and efficiency problem. Whether

human-like word learning should be a path to multimodal

AI remains a debate, but it is a fundamental ability for

human-AI alignment (Yuan et al., 2022).

Word learning represents a general form of human learning.

We learn with referential uncertainty, whereas machines

currently do not. We use cross-situational information to

support few-shot learning of words and concepts, whereas

models currently struggle. We learn with teaching and

social-pragmatic cues, whereas artificial agents currently

fail to understand. Before bridging the gap, how can we

assess the capability of machines to learn words under the

same conditions as humans? We take the first step by de-

signing these word learning tasks in machines; MEWL is

simple and intuitive to support these basic elements in word

learning and, in a broader range, human-like learning.

7. Conclusion

We propose MachinE Word Learning ( MEWL), a bench-

mark for human-like few-shot multimodal word learning

with referential uncertainty. Inspired by prior developmen-

tal studies on how children learn the meaning of words,

MEWL includes nine carefully designed tasks covering

humans’ core cognitive toolkits in word learning: cross-

situational reasoning, bootstrapping, and pragmatic learn-

ing. These tasks make MEWL the first comprehensive

suite for probing machines’ word learning capabilities and

echoing human word learning scenarios.

We further examine our tasks on contemporary multimodal

and unimodal pre-trained models. By recruiting human par-

ticipants for comparison on MEWL, we found unimodal

large language models demonstrate few-shot word learning

capabilities on certain subtasks but are still far from human-

like. Multimodal vision-language models fail on most tasks,

with only the largest language-model-based Flamingo per-

forming better. Together, the results suggest a misalignment

of machines’ and humans’ few-shot word learning capabili-

ties.

We hope MEWL serves as the beginning of our journey

to building multimodal agents with human-like few-shot

learning. Many open problems and opportunities are left

for the community to discuss further. For instance, how

to build machines that can learn from uncertainty like chil-

dren do? What role does social-pragmatic learning play

in machine learning? Can unimodal LLMs acquire word

meaning and conceptual roles in a way similar to humans

without perceptual grounding? Will human-like word learn-

ing lead to human-like word meaning? As word learning

is among the most fundamental cognitive skills for human

multimodal understanding, concept learning, and language

acquisition, it is undeniably an essential building block for

human-like intelligence. We hope our psychologically in-

formed MEWL can introduce human-like word learning

to machines and motivate future research into this problem.

Broader impact and limitation Our MEWL launches

a new initiative for modern multimodal learning and reason-

ing: Instead of focusing their performance on pure memo-

rization tasks, we probe their ability of few-shot learning

in context, starting with the fundamentals of human mul-

timodal word learning. We hope our work will stimulate

future research on developmentally realistic multimodal

models that are endowed with the core capabilities and

knowledge of human learning. As a first start, we incorpo-

rate nine tasks representing four types of word learning into

MEWL. However, the MEWL benchmark is essentially

synthetic and devoid of open-vocabulary concepts. As a re-

sult, if models are tweaked substantially on the training set,

models may find shortcuts, making MEWL degenerate

into a set of pattern recognition problems. Therefore, we

suggest future research on MEWL to build core multi-

modal learning capabilities (inductive biases) in a small-

data, developmentally plausible regime.
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A. Details for MEWL dataset generation

This section provides additional details on the generation procedures of MEWL.

A.1. Additional task construction details

shape There are three shapes in MEWL: cube, sphere, and cylinder. We randomly assign three unique novel words

to the shapes in each episode to create word-shape mappings. For example, temmar is cylinder, subno is cube, and teis is

sphere. When generating the context, we first select a shape (e.g., cylinder) and the corresponding word (e.g., temmar) as

utterance. We then create this context image containing one cylinder object and uniformly sample other properties (color,

size, material). To make it solvable, we also ensure every panel appears more than once and avoid ambiguous scenarios

where two concepts accidentally bind together across all contexts. For the query panel, we choose one shape for testing

(with an object of the selected shape as a query image). The candidate options are three novel words (each corresponds to a

shape concept) and two dummy words (randomly generated).

color There are eight colors in MEWL: gray, red, blue, green, brown, purple, cyan, and yellow. We randomly sample

three colors out of eight to appear in each episode. Other settings remain the same as in shape.

material When designing this task, we keep most of the settings unchanged from shape. Instead of naming colors,

we name three materials: rubber, metal, and glass.

object In this task, novel words bind to the objects (i.e., the quadruple of size, color, material, and shape). There are 2

(sizes) × 8 (colors) × 3 (materials) × 3 (shapes) = 144 unique objects in MEWL. We first sample six unique objects and

six novel words to construct images and utterances (e.g., daythetle is mall purple rubber cylinder, outsupac is small gray

metal cube, . . . , and peafcol is large cyan glass cylinder). Unlike the shape task, each image in object has three objects.

Each utterance has three words representing the three objects in the image (e.g., daythetle and outsupac and peafcol). We

randomly sample a subset of three objects from the six selected objects to construct a scene. Moreover, we ensure that there

are no identical scenes between the six contexts and one query. The five options consist of one ground-truth utterance and

four utterances corresponding to object subsets that have not appeared in the context or query.

composite This task focuses on learning compositional multi-word phrases and uses syntax to bootstrap the word

learning process. In detail, novel words represent attributes (shape, color, and material), and utterance phrases share the

same syntax in an episode. In each episode, we first sample two attribute types for naming (e.g., color and shape). We also

design an episode-specific syntax (e.g., the first word represents color, and the second word is a shape). For each type of

attribute, we randomly choose three instances (e.g., for color, we choose cyan, blue, yellow), resulting in six named attributes

(e.g., three colors and three shapes). We map six novel words to these attributes. In each image and the corresponding

utterance, we sample one object that satisfies the syntactic constraints (e.g., the object’s color must be in the three selected

colors, and the object’s shape also must be in the three selected shapes, but other attributes of the object are not restricted).

We ensure that there are no duplicated attribute pairs (two objects have the same color and shape) among all objects in the

images. The rest are the same as object.

relation In this task, we probe agents’ capability of learning relational words (i.e., left, right, front, and behind). To

construct spatial relations, we place three objects (with one dummy object) in an image and use two familiar English words

to refer to objects and a novel spatial relation word in between to represent objects’ relation (e.g., ªcyan cube dax brown

sphereº). We also replicate the ambiguity when children acquire spatial words. Because spatial locations are ambiguous:

For example, dax can refer to left or front when inferring from a single image (the left is often confounded with at least one

other orientation). Agents must use cross-situational reasoning to determine the exact meaning of the spatial words. We

design each novel word to appear twice to ensure the problem is solvable (e.g., from both left behind and left front, we can

rule out the other confounded orientation and understand dax means left). Therefore, only three spatial words are used in an

episode, leaving one orientation untouched. We use one of the three words (spatial relationships) in the query image.

bootstrap In composite, we have already used some syntactic cues to bootstrap the learning of attribute words. In

this bootstrap task, we take a step further by inferring objects’ names using familiar relational words. We include all four

spatial relation words (i.e., left, right, front, and behind) in familiar English and use novel words to represent objects (similar

to the setting in object). Six word-concept mappings are required to figure out in every episode. Each image includes

three objects (with one dummy object), and the utterance includes relations as cues (e.g., ªtufa behind daxº). Agents are

tasked to learn the meaning of the six novel words with the help of relational description and choose the correct answer from

the five options.
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number This task focuses on how to learn the number words, from one to six. In this way, we design the six context images

to contain different numbers of objects (ranging from one to six). Each utterance has a unique novel word corresponding to

the number of objects in the scene (e.g., ure is one, manthe is two, . . . , and sical is six). The query panel includes a random

number (within six) of objects. To solve the problem, agents need to count how many objects are in the scene and figure out

the word-number mapping.

pragmatic We design a pragmatic word learning scenario using rendered hands to represent the pointing gesture. In

detail, every image has a set of three objects and a finger pointing to a referred object. The referred object has a unique

attribute that can be uniquely identified from the context. For example, suppose the targeted object is a cube, while the other

two are cylinders. In that case, an informative speaker should use the term ªcubeº instead of ªlarge cyan metal cubeº to

refer to this object. In practice, we select six attributes from all available attributes (two sizes, eight colors, three materials,

and three shapes) and assign attributes with unique names (e.g., supcon is sphere, fuly is large, . . . , and mainder is purple).

Each of the six context images represents a novel attribute word, while we randomly select one attribute for the query image.

To generate three objects in a scene, we first sample one base object and modify this base object to become a referred object

with a unique attribute. We then modify different attribute types to construct the third object. Agents must understand the

correspondence of novel words to referred attributes. The rendering code for referring objects is based on Jiang & Ahn

(2020).

B. Captioning and text input for unimodal models

For unimodal language models, we use ground truth scene caption for each figure as the input. In this section, we describe

the caption generation process and provide some examples of the generated captions.

We use different captions for different types of questions.

The object, shape, color, material, composite, and number tasks require complete descriptions of all objects

in the scene, including their attributes (i.e., color, shape, material, size) to ensure all relevant information is provided. An

example of the generated captions is shown in Figure A1a.

(a) (Object) Caption: A small cyan metal
cylinder and a small yellow rubber sphere
and a large cyan glass cube.

(b) (Spatial) Caption: The large red metal
sphere is in front of the small blue metal
cube and behind the large cyan metal cylin-
der. The small blue metal cube is on the
left of the large cyan metal cylinder and on
the right of the large red metal sphere.

(c) (Pragmatic) Caption: A large brown
metal cube and a small brown metal cube
and a large cyan metal cube and a small
yellow rubber arrow. And a finger is point-
ing to the large cyan metal cube.

Figure A1: Examples of generated captions.

The relation and bootstrap tasks require knowledge of spatial relations between objects in the scene. To facilitate

this, captions for these tasks include the relative position of objects using terms such as ªfrontº, ªbehindº, ªleftº, and ªrightº

along with detailed descriptions of the objects. An example of the generated captions is shown in Figure A1b.

The pragmatic task necessitates not only knowledge of the objects and their descriptions but also the identification of the

object being pointed at in the scene. An example of the generated captions is shown in Figure A1c.

To perform the task, we construct the final text input by combining three elements: i) a prompt that specifies the problem

(i.e. ªPlease name the target object according to the above context.º). ii) captions for each figure in the context and their

associated utterances. iii) captions for the query image along with the provided options.

A full example text input for a problem in pragmatic can is shown below:
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Please name the target object according to the above context.

Context: A small cyan metal cylinder and a small cyan rubber cylinder and a small brown metal cylinder and a small yellow

rubber arrow. And a finger is pointing to the small brown metal cylinder. Name: enre

Context: A large brown metal sphere and a large brown metal cylinder and a large brown rubber sphere and a small yellow

rubber arrow. And a finger is pointing to the large brown metal cylinder. Name: taward

Context: A large brown metal cube and a small brown metal cube and a large cyan metal cube and a small yellow rubber

arrow. And a finger is pointing to the large cyan metal cube. Name: facset

Context: A large brown rubber sphere and a large brown rubber cube and a large brown glass cube and a small yellow rubber

arrow. And a finger is pointing to the large brown glass cube. Name: facov

Context: A small red metal cube and a small purple metal cube and a small red glass cube and a small yellow rubber arrow.

And a finger is pointing to the small purple metal cube. Name: alim

Context: A small green glass sphere and a small green rubber sphere and a large green glass sphere and a small yellow

rubber arrow. And a finger is pointing to the large green glass sphere. Name: tedfac

Context: A small yellow rubber cube and a large yellow rubber cube and a large purple rubber cube and a small yellow

rubber arrow. And a finger is pointing to the large purple rubber cube. Name: [Option]

[Option] is a candidate utterance (e.g., ªenreº, ªtedfacº, ªfacsetº, ªalimº, or ªfacovº).

C. Experimental details

In this section, we describe the experimental details for the baseline models used in the paper.

For vision-language models, we use the image and the corresponding text as input. While for language-only models, we first

use a captioner to parse the image into full scene descriptions, then use the scene descriptions and utterances as input.

C.1. Model details

CLIP The CLIP model utilizes a pre-trained image encoder (ViT-B/16) to extract features from images. Text features are

calculated using either the text encoder of CLIP-ViT-B-16 (for CLIP (w/ TE)) or CLIP’s token embedding (for CLIP (w/o

TE)). The resulting features are concatenated in the format of [image1, utterance1, image2, utterance2,

..., image6, utterance6, image query, option1, option2, ..., option5]. These input fea-

tures are then passed through a 6-layer Transformer model with an MLP head for classification. We freeze the CLIP when

training. The model is trained on the training set for 600 epochs, dropout 0.1, batch size 64, learning rate 1× 10−4, and

AdamW optimizer (weight decay 0.01).

Aloe The Aloe model employs the MONet architecture as provided by Engelcke et al. (2020). The MONet model is

pre-trained on the training set images resized into 128 × 128 for 600 epochs with Adam (lr = 1 × 10−5), 7 slots, and a

latent dimension of 16. We take the mean as the object feature of the figure and use this feature as the visual input for

the Transformer. As for the text input, we embed each word using a trainable embedding as follows: i) If the utterance is

a typical English word (e.g. yellow, metal, and), the utterance is directly encoded by the embedder. ii) If the word is a

novel one, it is embedded as a random placeholder. The visual inputs are concatenated with text embeddings of the context

utterances and choices in a similar format as the CLIP model inputs. These inputs are then passed through a Transformer

model with a head size of 8, a latent dimension of 512, and trained for 600 epochs using the Adam optimizer with a learning

rate of 1× 10−4 for classification. Hyperparameters for the Transformer model are as follows: training 200 epochs, learning

rate 5× 10−5, Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8, linear learning rate decay, and batch size 128.

Flamingo-1.1B Since the Flamingo models’ pre-trained weights are not accessible, we use open-sourced implementations

of the Flamingo model1. Specifically, we use a 1.1B Flamingo model built upon OPT-350M and CLIP pre-trained ViT-L/14

model. The model is pre-trained on the Conceptual Captions dataset.

For MEWL tasks, we formulated it as a multiple-choice problem (similar to how GPT performs multiple-choice tasks).

Specifically, we add a binary classifier head to Flamingo’s last layer outputs. Meanwhile, we concatenate episodic interleaved

image and utterance pairs, the query image, and one option (candidate utterance) as input. We feed each episode five times to

get the logits corresponding to the five options and pass through a softmax layer to get the final answer. We use cross-entropy

loss for training. Hyperparameters are as follows: training steps 30000 (≈ 106 epochs), learning rate 5 × 10−5, Adam

1https://github.com/lucidrains/flamingo-pytorch and https://github.com/dhansmair/

flamingo-mini
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optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8, linear learning rate decay, and batch size 96.

GPT-3.5 We use the text-davinci-003 model provided by the OpenAI API. Formulated as a few-shot multiple

choice question answering problem, we concatenate all the image captions and utterances as inputs. Formally following

four steps: i). We caption six context images and a query image into caption1, caption2, caption3, ...,

caption6, query caption. ii). We concatenate them with the corresponding utterances (context) to get the context

input C =[caption1, utterance1, caption2, utterance2, ..., caption6, utterance6]. iii).

We then construct five inputs for GPT-3.5 by concatenating context input, query caption, and a possible option (e.g., [C,

query caption, option1], [C, query caption, option2], . . . , [C, query caption, option5]).

iv). Finally, we feed the prompt to GPT-3.5 and choose the one with the largest log probability as the answer.

BERT For the BERT model, we follow standard practice for utilizing BERT as a multiple-choice question answering; see

Section 4.4 of Devlin et al. (2018) for details. We first generate ground truth captions for each figure using the captioner

and construct the question input [caption1, utterance1, caption2, utterance2, ..., caption6,

utterance6, query caption]. Then, we construct five input sentences by concatenating the question input and a

candidate option. We adopt a linear scoring head and a softmax layer on the last layer’s [CLS] hidden state to calculate the

class probability.

We fine-tune a BERT-base model on the training set for 200 epochs, with learning rate 5 × 10−5, Adam optimizer

(β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8, linear learning rate decay, and batch size 64.

D. Human study

271 participants were recruited from Prolific (169 female; mean age 42.8) for the nine tasks. All of the participants are

from UK or USA and have a Bachelor’s degree or higher. The participants were paid an hourly wage of £6 (with a bonus of

£0.25-£2). This study has been approved by an IRB. 270 of 271 responses are accepted (one failed in familiarization), 217

of which are valid (52 removed due to failures in attention checks, and one removed due to outlier).

D.1. Data processing

Responses from participants who failed attention check questions were removed when measuring human performance.

Besides, Grubbs’ tests were performed with the significance level α = 0.5 in each group to remove outlier results. Only one

outlier was detected and removed.

D.2. Tests of statistical significance

We used a t-test to determine if one task is significantly easier than the other. The t-test was performed between any two

groups of human results with the significance level p < .05 (one-tailed). Our null hypothesis is that the group of results with

a higher mean is not significantly better than the other group. the The average of human performance and t-test results are

shown in Table A1 and Table A2, respectively.

Table A1: Performance of humans on MEWL.

shape color material object composite relation bootstrap number pragmatic Avg.

Human 92.4 87.2 72.7 79.1 63.5 48.7 71.0 93.9 54.8 73.7

Table A2: The p-values of human results on the MEWL. Blue indicates that the task with a higher average is significantly easier for
humans than the other, while Red indicates that there is no significant difference in difficulty between the two tasks.

color material object composite relation bootstrap number pragmatic

shape .098 < .001 .003 < .001 < .001 .001 .305 < .001
color - .006 .065 < .001 < .001 .002 .058 < .001

material - - .133 .082 < .001 .385 < .001 .015
object - - - .009 < .001 .074 .002 .002

composite - - - - .016 .120 < .001 .150
relation - - - - - < .001 < .001 .225
bootstrap - - - - - - < .001 .021
number - - - - - - - < .001
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E. More task examples

E.1. shape

decit baun baun

paments baun decit

Query

Options:
paments
tivetem
lyers
decit
baun

Ground Truth:
paments

Word-Concept Mapping:
baun: sphere
paments: cylinder
decit: cube

subno teis temmar

subno subno teis

Query

Options:
teis
temmar
subno
pleno
iespen

Ground Truth:
teis

Word-Concept Mapping:
temmar: cylinder
subno: cube
teis: sphere
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E.2. color

unap unap agemo

unap ernmo agemo

Query

Options:
agemo
unap
caru
enceside
ernmo

Ground Truth:
unap

Word-Concept Mapping:
agemo: blue
ernmo: green
unap: gray

romu preeve preeve

posden romu preeve

Query

Options:
posden
noten
preeve
romu
lay

Ground Truth:
posden

Word-Concept Mapping:
romu: brown
posden: blue
preeve: green
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E.3. material

alof alof posen

alof posen nipos

Query

Options:
alof
lecber
nipos
laet
posen

Ground Truth:
nipos

Word-Concept Mapping:
alof: glass
posen: metal
nipos: rubber

pensup mentter mentter

iesman iesman pensup

Query

Options:
iesman
ernsup
pensup
cyies
mentter

Ground Truth:
pensup

Word-Concept Mapping:
pensup: glass
iesman: rubber
mentter: metal
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E.4. object

uptalters and motionsrec and aringson motionsrec and aringson and auningaus motionsrec and aringson and menafad

uptalters and motionsrec and auningaus uptalters and auningaus and menafad ersnesstu and motionsrec and auningaus

Query

Options:
uptalters and ersnesstu and auningaus
uptalters and aringson and auningaus
ersnesstu and auningaus and menafad
uptalters and ersnesstu and motionsrec
uptalters and motionsrec and menafad

Ground Truth:
uptalters and motionsrec and menafad

Word-Concept Mapping:
uptalters: ['cylinder', 'purple', 'rubber', 'large']
ersnesstu: ['sphere', 'brown', 'metal', 'small']
motionsrec: ['sphere', 'green', 'metal', 'small']
aringson: ['cube', 'red', 'glass', 'small']
auningaus: ['cylinder', 'gray', 'metal', 'small']
menafad: ['sphere', 'green', 'glass', 'large']

outsupac and upcation and someapset daythetle and outsupac and menmatin menmatin and someapset and peafcol

daythetle and outsupac and peafcol outsupac and upcation and peafcol outsupac and someapset and peafcol

Query

Options:
daythetle and menmatin and someapset
upcation and someapset and peafcol
daythetle and someapset and peafcol
daythetle and upcation and menmatin
upcation and menmatin and peafcol

Ground Truth:
daythetle and upcation and menmatin

Word-Concept Mapping:
daythetle: ['cylinder', 'purple', 'rubber', 'small']
outsupac: ['cube', 'gray', 'metal', 'small']
upcation: ['cube', 'yellow', 'rubber', 'small']
menmatin: ['sphere', 'purple', 'rubber', 'small']
someapset: ['sphere', 'purple', 'metal', 'large']
peafcol: ['cylinder', 'cyan', 'glass', 'large']
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MEWL: Machine word learning

E.5. composite

iesviket rinalcit menparning rinalcit iesviket soerpar

nesslecro soerpar nesslecro mistenings iesviket mistenings

Query

Options:
iesviket mistenings
iesviket rinalcit
nesslecro rinalcit
menparning soerpar
menparning mistenings

Ground Truth:
menparning mistenings

Word-Concept Mapping:
menparning: gray
iesviket: brown
nesslecro: blue
soerpar: cube
mistenings: cylinder
rinalcit: sphere

tonalal setlyson berdaqo preorlec partiesic retleness

partiesic preorlec partiesic setlyson berdaqo retleness

Query

Options:
tonalal preorlec
tonalal setlyson
tonalal retleness
berdaqo preorlec
berdaqo setlyson

Ground Truth:
berdaqo setlyson

Word-Concept Mapping:
berdaqo: cube
partiesic: cylinder
tonalal: sphere
setlyson: purple
retleness: cyan
preorlec: blue
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MEWL: Machine word learning

E.6. relation

blue cube minviis purple sphere green cube minviis red cube gray sphere manuim cyan cylinder

brown cube mentlito gray cube blue cube mentlito red cylinder red sphere manuim yellow cylinder

Query

Options:
blue cube mentlito gray sphere
blue cube manuim gray sphere
red cylinder mentlito gray sphere
gray sphere manuim blue cube
blue cube minviis gray sphere

Ground Truth:
blue cube manuim gray sphere

Word-Concept Mapping:
manuim: behind
minviis: front
mentlito: left

purple cube denbepi brown sphere gray cylinder dencarence blue cylinder purple cube picyca brown cube

yellow cube denbepi red cube cyan cube picyca purple cube blue cube dencarence cyan cylinder

Query

Options:
red cylinder dencarence yellow cylinder
yellow cylinder dencarence purple cube
purple cube denbepi red cylinder
yellow cylinder picyca purple cube
yellow cylinder denbepi purple cube

Ground Truth:
yellow cylinder dencarence purple cube

Word-Concept Mapping:
dencarence: behind
picyca: right
denbepi: front
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MEWL: Machine word learning

E.7. bootstrap

nesstorma right ortivefor sitedso right nesstorma nesstorma right encesonpen

dibety right sitedso sitedso front presmoncan ortivefor left presmoncan

Query

Options:
encesonpen front sitedso
sitedso behind ortivefor
ortivefor right dibety
presmoncan right dibety
encesonpen right dibety

Ground Truth:
sitedso behind ortivefor

Word-Concept Mapping:
encesonpen: ['sphere', 'cyan', 'rubber', 'small']
presmoncan: ['sphere', 'green', 'rubber', 'large']
ortivefor: ['cube', 'blue', 'metal', 'small']
nesstorma: ['cylinder', 'brown', 'rubber', 'large']
sitedso: ['sphere', 'blue', 'glass', 'small']
dibety: ['cube', 'brown', 'glass', 'small']

onalday front agetalvi onalday right wardernre agetalvi behind wardernre

tedfaccle left agetalvi tedfaccle left onalday tedfaccle front difculo

Query

Options:
tionssionno right agetalvi
difculo left onalday
tionssionno left difculo
tionssionno right tedfaccle
wardernre front tedfaccle

Ground Truth:
tionssionno right agetalvi

Word-Concept Mapping:
wardernre: ['cylinder', 'cyan', 'rubber', 'large']
agetalvi: ['cube', 'purple', 'glass', 'small']
tionssionno: ['sphere', 'purple', 'metal', 'large']
difculo: ['cylinder', 'brown', 'metal', 'large']
onalday: ['cylinder', 'green', 'metal', 'large']
tedfaccle: ['cylinder', 'green', 'glass', 'small']
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MEWL: Machine word learning

E.8. number

sical ure riside

torden manthe mentmo

Query

Options:
mentmo
ure
riside
torden
sical

Ground Truth:
torden

Word-Concept Mapping:
ure: 1
manthe: 2
riside: 3
mentmo: 4
torden: 5
sical: 6

covning dying dybe

upday vimy deneve

Query

Options:
covning
dying
dybe
deneve
vimy

Ground Truth:
covning

Word-Concept Mapping:
covning: 1
dying: 2
upday: 3
dybe: 4
deneve: 5
vimy: 6
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MEWL: Machine word learning

E.9. pragmatic

ite patri landward

raap ane sideex

pomis

Options:
ingsan
pomis
unout
sideex
sidefa

Ground Truth:
sidefa

Word-Concept Mapping:
unout: small
sideex: cylinder
sidefa: sphere
pomis: yellow
raap: blue
ingsan: cube

tiage rations enments

fery comaf supcon

fuly

Options:
fuly
mainder
fery
supcon
nupen

Ground Truth:
fuly

Word-Concept Mapping:
supcon: sphere
fuly: large
rations: brown
nupen: gray
fery: rubber
mainder: purple
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