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Abstract— We present an optimization-based framework for
rearranging indoor furniture to accommodate human-robot co-
activities better. The rearrangement aims to afford sufficient
accessible space for robot activities without compromising
everyday human activities. To retain human activities, our
algorithm preserves the functional relations among furniture by
integrating spatial and semantic co-occurrence extracted from
SUNCG and ConceptNet, respectively. By defining the robot’s
accessible space by the amount of open space it can traverse
and the number of objects it can reach, we formulate the
rearrangement for human-robot co-activity as an optimization
problem, solved by adaptive simulated annealing (ASA) and
covariance matrix adaptation evolution strategy (CMA-ES).
Our experiments on the SUNCG dataset quantitatively show
that rearranged scenes provide a robot with 14% more accessi-
ble space and 30% more objects to interact with on average. The
quality of the rearranged scenes is qualitatively validated by a
human study, indicating the efficacy of the proposed strategy.

I. INTRODUCTION

Service robots are gaining popularity in domestic settings,
where they are expected to perform various complex house-
hold tasks. Typically, indoor scenes are designed and orga-
nized in accordance with human needs, often too confined
and clustered for conventional service robots to navigate
and interact. To tackle these challenges, researchers have
developed several effective planning algorithms, designed to
(i) retrieve objects in confined and cluttered spaces [1–3],
(ii) coordinate whole-body motions for articulate objects [4–
6], (iii) coordinate foot-arm via virtual mechanisms for
sequential manipulation tasks [7, 8], and (iv) integrate robot
perception and task planning for household environments [9–
11]. Nevertheless, indoor scenes designed purely for humans
may fundamentally prohibit robot activities due to their dif-
ferent morphology and movement patterns; robots with bulky
embodiments have difficulty in imitating human motions and
require larger open spaces.

Fig. 1a illustrates the above problem. In this example, a
person may easily approach and interact with the nightstand,
whereas a robot cannot due to its bulky mobile base that
is larger than the space between the bed and the wall.
Similarly, a robot cannot reach the bookshelf due to the
narrow passageway between the chair and the bed. These
prevalent restrictions of service robots significantly restrict
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(a) human activity only (b) human-robot co-activity
Fig. 1: Rearrange indoor scenes for human-robot co-activity.
(a) A person may pass through the narrow passages at A and
B for daily activities, whereas a robot cannot due to its larger
footprint. As a result, the robot’s activities are limited in household
environments designed purely for human activities. (b) A rearranged
scene, optimized for human-robot co-activity, provides sufficient
open space for robot activities while preserving human preferences.

the robot’s capabilities in household environments. Notably,
better planning algorithms cannot solve this problem; the
room layout must be optimized for human-robot co-activity.

We argue that the essence of scene rearrangement for
human-robot co-activity is to preserve human preference
for indoor activities while affording more robot activities in
terms of accessible space and interactions with objects. This
dual objective requires simultaneously modeling both human
preference and robot preference in the indoor scenes.

Scene synthesis has primarily modeled human preference
and automatically generates scene layout from scratch sub-
jects to constraints. Classic methods exploit simple heuristics
to construct these constraints, such as interior design guide-
lines [12] or user-provided positive examples [13]. Modern
treatments adopt learning-based approach, such as learning
object-object relations [14, 15], modeling human activities
with objects [16, 17], mining topological relationships among
object groups [18], and capturing latent information via
generative models [19–21]. In particular, the common as-
sumption in scene synthesis is that large datasets capture
the statistics (i.e., scene layouts) for downstream tasks. This
assumption no longer holds for human-robot co-activity as
existing datasets only capture human preference, lacking
statistics to model their robot counterpart.

Scene rearrangement has modeled either human or robot
preference individually, such as to (i) reduce the risk of pa-
tient falls [22], (ii) improve robot navigation efficiency [23],
(iii) boost workspace task performance [24], and (iv) promote
collaboration [25]. The lack of joint modeling of both human
and robot preferences calls for alternative approaches.
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To model human preference, we encode it implicitly
by functional groups of objects (i.e., furniture) [26, 27].
Intuitively, we place a nightstand beside a bed and a chair
alongside a table. More broadly, objects within a functional
group should be (re)arranged together, whereas their relative
poses can vary within a smaller range. As such, a straightfor-
ward idea to model functional groups is based on spatial co-
occurrence, i.e., the frequency with which two objects appear
together and in close proximity [13, 14, 28, 29]. Nonetheless,
such a statistical perspective might be deceiving; the prox-
imity of two objects does not necessarily suggest that they
belong to the same functional group, especially in cluttered
indoor scenes. In Fig. 1a, the chair and the bed, as well
as the nightstand and the bed, are pretty close to each other.
However, the bed and the chair are not in the same functional
group. To overcome the ambiguity stemming from spatial
co-occurrence, we employ ConceptNet [30], a sizeable open-
source knowledge graph database, to refine functional rela-
tions based on additional semantic co-occurrence of objects.

To model robot preference, we utilize accessible space:
the amount of open space a robot can traverse and the number
of objects it can reach. Intuitively, a scene must afford
sufficient open space for a robot to explore while performing
given tasks. Objects must also be properly oriented for
successful manipulation; for instance, a desk can be placed
against a wall, but cabinets and drawers must face outside. To
effectively encode and compute various possible interactions
between a robot and a scene, we introduce a signed distance
field (SDF) to represent (i) the scene’s navigable area, given
robot footprint and object placements, and (ii) the interaction
affordance defined on the object boundary, akin to “dark
matters” [31, 32] that attract or repel possible interactions.

Computationally, we design an optimization framework of
scene rearrangement for human-robot co-activity that takes
as input the above robot and human preferences. Fig. 1b
illustrates an exemplar result, in which robot and human
preferences are co-optimized: (i) the robot functions more
efficiently due to larger open space and potentially more
interactions with objects, and (ii) the objects within func-
tional groups remain close to satisfying human preference.
In the experiment, we evaluate our method using the SUNCG
dataset [33]. Not only do the rearranged scene layouts afford
an average of 30% more robot activities and 14% more open
space, but also keep the Naturalness based on a human study.

Our contributions are threefold: (i) We develop a new
method to capture human preferences via functional relations
among objects by combining the spatial and semantic co-
occurrence. (ii) We model robot preferences by its accessible
space, represented by an SDF for efficient computation. (iii)
We devise an optimization-based framework to balance hu-
man and robot preferences when rearranging scene layouts.

The remainder of this paper is organized as follows.
Sec. II formally describes our modeling of human and robot
preferences, subsequently formulated as an optimization
framework presented in Sec. III. Experimental results are
presented in Sec. IV. We conclude the paper in Sec. V.

II. HUMAN AND ROBOT PREFERENCES

In this section, we describe how we model (i) human
preference by combining objects’ semantic and spatial co-
occurrences to determine functional object groups and (ii)
robot preference by its accessible space in the scene.

A. Human Preference

We model human preference implicitly by functional ob-
ject groups. Discovering functional groups that emerge from
objects in cluttered scenes is challenging due to the inher-
ited ambiguity of objects’ functional relations. Two nearby
objects with close proximity do not necessarily indicate that
they are functionally related (e.g., the example of the bed and
chair shown in Fig. 2a), and objects with similar semantics
(e.g., a desk and a coffee table) also do not imply that they
are within a functional group. Hence, relying solely on spatial
or semantics alone cannot correctly uncover the functional
groups. In this work, we seek an integrated solution.

Objective: We employ a weighted scene graph G “

pV, Sq to represent the relations among objects within a
scene. Specifically, an object is represented by a node vi “

xoi, Bi, piy PV in the scene graph, including object label oi,
oriented 3D bounding box Bi, and the object planar pose pi.
Each edge si,j “ xvi, vj , wijy PS is a tuple that encodes the
relation between two objects vi and vj . The edge weight wij
indicates how likely vi and vj are within a functional group:

wij “P pvi, vj |Gq“
1

Z
Psempoi, oj |GqPspapoi, oj |Gq, (1)

where Z is a normalizing factor obtained by summing over
all the products of the pairwise semantic/spatial probabilities:

Z “
ÿ

oi,oj ,i‰j

Psempoi, oj |GqPspapoi, oj |Gq, (2)

and Psemp¨q and Pspap¨q are the probabilities reflecting the
semantic and spatial correlations of two objects, respectively.

Semantic Relation: To obtain two object’s seman-
tic relation Psempoi, oj |Gq, we utilize ConceptNet [30], an
open-source knowledge graph database that characterizes
the strength of the semantic relation between two object
labels oi and oj by hij P r0, 1s; a greater hij suggests a
stronger semantic relation. Unfortunately, ConceptNet would
assign a large hij to two synonyms (e.g., a chair and an
armchair, a desk and a table), resulting in wrong functional
relations between similar objects. To tackle this issue, when
oi is synonymous with oj , we replace hij returned from
ConceptNet by h averaged over all other pairs of objects
in the scene to indicate a neutral relation:

h˚
ij “

#

hij , ␣ IsApoi, ojq

Avgpthmn|␣ IsApom, onquq, otherwise
, (3)

where IsA is an edge type, indicating oi is synonymous with
oj . Notably, we do not set h between two synonyms to 0 to
avoid rearranging these two objects apart. Taken together,
the semantic relation in Equation (1) is given by:

Psempoi, oj |Gq“
h˚
ij

ř

sPS h
. (4)
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Fig. 2: Essential factors to rearrange scenes for human-robot co-activity. (a) To preserve human preference encoded by object relations,
we model object co-occurrence using semantic and spatial relations extracted from ConceptNet and SUNCG, respectively. (b) Robots can
only interact with certain furniture from specific directions, such as approaching a cabinet or drawer from the front. Hence, we devise a
pseudo-interaction function to indicate the desired furniture orientation. (c) After fitting an inflated circular base to the robot’s footprint,
the robot’s accessible space in the scene (shaded blue) can be determined by an SDF. (d) These three factors are formalized into an
optimization framework to rearrange scenes for human-robot co-activity.

Spatial Relation: To determine how likely objects oi
and oj are related based on their spatial distance dij , we
query their co-occurrence in the SUNCG dataset:

Pspapoi, oj |Gq9Pdpdij |oi, ojqPcopoi, ojq, (5)

where Pdp¨|oi, ojq is the distribution of relative poses be-
tween oi and oj in the SUNCG dataset. In practice,
Pdp¨|oi, ojq is biased if oi and oj rarely co-occur in the same
scene. Hence, we add a term Pco for bias correction:

Pcopoi, ojq“
Nij

min
`
ř

kPO Njk,
ř

kPO Nik

˘ , (6)

where Nij is the number of co-occurrences of oi and oj in
the dataset, and O is the set of all semantic labels.

B. Robot Preference
Due to the existence of narrow passages and obstacles, a

human-made environment is unfit for the functioning of a
service robot. By rearranging the scene, we seek to expand
the open space for robot activity. Specifically, we model the
robot preference for a scene based on its accessible space
R, which has a closed boundary. The accessible space of a
robot consists of two components: (i) the open space it can
traverse and (ii) the number of objects it can reach.

Size of Open Space: The open space that a service
robot can traverse can be effectively computed by:

fRpqq“ fBpqq´rb, (7)

where fB :R2 Ñ R is an SDF that measures the shortest
signed Euclidean distance from a query point q to the
bounding boxes of objects in the scene. When the robot is
outside, on the boundary, or inside (i.e., invalid robot pose),
the SDF’s value is larger than, equal to, or less than zero,
respectively. After imposing a circular base inflated with a
radius of rb as a safety margin, fR :R2 Ñ R denotes the
entire open space of the robot.

Number of Interacting Objects: Although the size of
the open space reveals a robot’s capability to traverse the
environment, it does not necessarily reflect a robot’s ability
to interact with objects. For instance, the cabinet door should
not face the wall, as a robot cannot interact with it otherwise.
Fig. 2b provides other examples; the green shaded areas
around different objects indicate how a robot may approach
and interact with these objects, whereas the red shaded areas
imply the opposite. Computationally, we further introduce a
pseudo-interaction function:

fIipqq“ sgnpqq ¨maxp0,´
f`
Bi
pqq

dmax `1q, (8)

where f`
Bi

pqq is an SDF that only returns a positive distance
from a query point q (e.g., a robot pose) to the bounding
box of the object vi, dmax is the normalizing factor set to the
maximum distance that the robot arm can reach, and sgnp¨q

assigns positive weights to the green shaded areas in Fig. 2b
(i.e., the area where a robot would interact with the object)
and negative to the red shaded areas.

III. OPTIMIZATION

After building both human and robot preferences, we
devise an optimization framework that balances these prefer-
ences and rearranges scenes accordingly. The resulting scene
supports better human-robot co-activity.

A. Objectives

Human Term: Recall that human preference is mod-
eled as a weighted scene graph G defined in Equation (1).
We first cluster the edges in G w.r.t. the edge weight by
Gaussian mixture models (GMM). Next, assuming that edges
within the same functional group have large weights, we
prune cluster edges that have small weights, resulting in a



filtered scene graph G‹. As a result, each connected sub-
graph G‹ is a functional group. Finally, the human term is
defined as:

Hsi,j “ 1´
Pd

`

d|oi, oj ; s
‹
ij PG‹

˘

sup ||Pd

`

¨|oi, oj ; s‹
ij PG‹

˘

||
, (9)

where s‹
ij is the edge connecting oi and oj in G‹.

Robot Term: The robot term is the combination of
Equations (7) and (8):

Ii“´

ż

qPIiXR
fIipqq`αfRpqqdq, (10)

where α is an empirically set balancing constant. A smaller
Ii is preferred for more open space for the robot.

Objective: Let ψ“ tpi|vi PV u denote the scene layout.
We formulate the problem of rearranging scenes as an
optimization problem that minimizes the human and robot
terms introduced in Equations (9) and (10).

min
ψ

ÿ

s‹PG‹

Hs`β
ÿ

viPV

Ii,

s.t. dpvi, vjq ą 0, @vi, vj PV, i‰ j,

(11)

where β is an empirically set balancing constant and the
constraint d forces the minimum distance between object
pairs to be positive; i.e., each object pair is collision-free.

B. Optimization

We adopt the adaptive simulated annealing (ASA) [34]
to solve the above optimization problem. ASA searches for
a global minimum in an energy landscape defined by the
objective function. Specifically, a candidate scene layout is
sampled from a uniform distribution and is accepted based on
the Metropolis criterion. ASA adjusts step size after several
optimization iterations to maintain an approximately equal
number of accepted and rejected samples for each variable.
In practice, we find that ASA excels in escaping local minima
but struggles to converge due to the enormous search space.

Search Space: We hierarchically optimize the layout
to reduce the search space. The optimization is decomposed
into two steps given a native human-centric scene. First, each
functional group of the scene is treated as a sub-scene and
is optimized independently w.r.t. Equation (11). Second, an
optimized functional group is treated as a single object, and
the scene layout is optimized over functional groups. Fig. 2d
shows an optimization process with intermediate layouts.

Convergence: We adopt covariance matrix adapta-
tion evolution strategy (CMA-ES) to expedite convergence.
CMA-ES is a derivative-free stochastic method for numerical
optimization, which repeatedly applies the survival of the
fittest process to its population and rapidly converges to a
nearby local minimum. At the beginning of each iteration,
CMA-ES draws samples from a multivariate normal distri-
bution: ψ1 „N pm,σ2Cq, where m is the weighted mean
of the most promising layouts of previous samples, σ is the
overall standard deviation or step size, and C is the estimated
covariance matrix. At the end of each iteration, the algorithm
updates these parameters according to the performance of

the population, shifting the expected variance in the same
direction as the estimated gradient.

IV. EXPERIMENTS

We test our method on SUNCG [33]. We randomly select
90% of the scenes for learning and the remaining for testing.
Seven scenes were chosen for human evaluation.

A. Qualitative Results

Fig. 3 qualitatively show 10 scenes. The blue shaded area
depicts the robot’s accessible space, whereas the red objects
are out of reach. Comparing optimization based solely on
robot preference (Fig. 3b) with optimization based on both
human and robot preferences (Fig. 3c), we qualitatively
demonstrate that our method (i) simultaneously increases the
robot’s accessible space and affords more robot interactions
with objects, and (ii) properly maintain the human preference
encoded by the functional objects; e.g., the desk–chair and
bed–nightstand functional object pairs are together.

B. Quantitative Results

Robot Preference: We devise two evaluation criteria:
(i) a simple heuristic based on the number of reachable
objects, and (ii) the robot term defined in Equation (10).
Fig. 4 summarizes quantitative results aggregated from 154
scenes randomly selected from the test set. Specifically, it
plots the change of these two criteria. We note that most
of the rearranged scenes are located in the first quadrant,
indicating greater support for robot activity. Some scenes
are located in the fourth quadrant because interaction spaces
were sacrificed in exchange for more accessible objects.

Human Preference: We conducted a human study to
validate if the rearranged scenes preserve human preference.
11 participants were recruited to evaluate 7 pairs (Fig. 3(1)–
(7)) of original (Fig. 3a) and rearranged (Fig. 3c) scenes:

‚ The Naturalness (How natural does the scene look?);
‚ The Functionality (How well do you think you can

perform your daily activities in the scene?).
They were asked to provide ratings to the above questions
on a scale of 1 to 5, with 1 being not at all and 5 very much.

The collected responses were analyzed using an indepen-
dent samples t-test with a significance level of 0.05. Five of
seven scenes (i.e., Fig. 3(1)–(5)) lack statistical significance
for either Naturalness or Functionality. Although the rear-
ranged scenes tend to obtain slightly lower human ratings
than their original layouts, the insignificance indicates that
the rearranged scenes do not significantly diminish human
values, while improving the robots’ accessible space and the
number of supported activities.

The differences in human rating for scene 6 and scene
7 are statistically significant, with tp10q “ 1.0, p“ 0.0029
and tp10q “ 1.0, p“ 0.0023, respectively. Although the rear-
ranged scenes are more friendly to robots, human participants
appear to be quite sensitive to unusual object arrangements.
After rearrangement, they can quickly identify the undesired
orientation of the bed in Fig. 3(6) and the chair blocked by
the desk in Fig. 3(7), resulting in much lower ratings for
these two scenes.



(a) original (no optimization)

(b) optimized based only on robot preference

(c) optimized based on both human and robot preferences
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Fig. 3: Examples of rearranged scenes. Blue area denotes the accessible space, whereas the red objects are out of reach.

C. Ablations

Robot Factors: To further study how robot specifica-
tions may impact the results of scene rearrangement, we use
three living areas presented in Fig. 6a to illustrate how our
method performs differently for two distinct robots: Husky
with UR5, which is larger, and Dingo with UR3, which is
smaller. The scenes in Fig. 6(1) and Fig. 6(2) depict the
scenes optimized for Dingo and Husky robots, respectively.
Despite the final layouts for both robots (Fig. 6b and Fig. 6c)

are similar, the layout in Fig. 6(3) is still not optimal for the
Husky robot due to its larger size. These results suggest that
if the robot’s dimension exceeds a particular threshold, it
may be impossible to design a layout that accommodates
the robot’s activities. Similarly, the improvements offered by
the scene rearrangement based on a specific type of robot
are only partially transferable to another, possibly requiring
an entirely new scene rearrangement.
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Fig. 4: Quantitative results evaluated on 154 scenes in SUNCG
dataset. The scatter plot depicts the improvement of each scene
in terms of robot preference following scene rearrangement. The
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Fig. 5: Averaged human rating scores regarding whether or not
rearranged scenes maintain preferences in terms of Naturalness
and Functionality. The black error bars represent a 95% confidence
interval. The first five pairs of scenes following the order in Fig. 3
are not statistically significant, whereas the last two are.

Task-Specific Factors: In this ablation, we demonstrate
the applicability of our method to task-specific scenarios
by defining Robot Motion Cost MT “

ř

tPT Lpppqti , q
t
jqq as

the robot’s total navigation distance of a set of activities T .
Adding this cost term to the optimization objective defined
in Equation (11) can rearrange scenes to reduce the robot’s
motion effort further, hence improving its task efficiency. In
an office environment depicted in Fig. 7a, which contains
three types of functional groups—working, relaxing, and
dining—the robot has been assigned three tasks involving
numerous activities. The “clean” task (red paths, Fig. 7b)
is performed primarily in the working functional group,
the “restocking” task (yellow paths, Fig. 7c) requires the
robot to visit all cabinets and shelves in the scene, and the
“distribution” task (green paths, Fig. 7d) requires the robot
to traverse among all three functional groups. These scenes
are rearranged according to the Dingo robot’s specifications.

V. CONCLUSION

This paper presented an optimization-based framework
for rearranging indoor scenes according to both human
and robot preferences. Specifically, the human preference
was captured by uncovering the functional relations among
objects governing their arrangements, modeled by their
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Fig. 6: Scenes rearranged for Dingo and Husky.
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Fig. 7: Scenes optimized for human-robot co-activity given
various activities.

semantic and spatial co-occurrences from the ConceptNet
and SUNCG datasets. The robot preference was represented
by its accessible space. We formulated these factors into
an optimization problem that rearranges a given scene by
optimizing furniture layouts. Experimental results showed
that the proposed method expands the open space, increases
the number of reachable objects, and minimizes traveling
effort in robot activities. Moreover, our human study re-
vealed that most of the rearranged scenes remained natural
and acceptable to humans, as the ratings were statistically
insignificant compared to the original layouts. These findings
signified that rearranges produced by the proposed method
effectively promote human-robot co-activities.
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