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Localization Model By Ranking
Challenges:
• Signal processing approaches use explicit acoustic features, e.g. TDOA, IID,

incapable in complex environment and non-field-of-view (NFOV) regions.
• Data-driven classification methods have difficulties in collecting training data, and

are too cumbersome to adapt in unknown indoor environments.

Fig 1. A multi-room environment. The blue bars
indicate the exploration priority. The red path
shows a wrong exploration whereas the green
path shows a subsequent exploration.

The proposed approach using a self-supervised incremental learning scheme:
(a) The multi-channel signals from the user's wake-up word are picked up by VAD.

Each signal is transferred to the amplitude spectrum and normalized to [0, 1];
(b)An auto-encoder is trained to extract implicit features. Each block represents a

2D convolution with stride s[� , �], kernel size k[� , �], and the number of channels.
(c) An occupancy map obtained from the reconstructed point cloud.
(d) Down-sampled (c) by pooling and append to (b) to form the feature for learning.
(e) Individual rooms are segmented from the point cloud.
(f) The HARAM model is adopted to predict the priority rank of rooms the robot

should visit.
(g)The robot self-supervises the learning by exploring the rooms.
(h)The exploration will be labeled as the positive sample if the robot detects the

user, which will update HARAM model incrementally.

Fig 7. The mean accuracy of (blue) the
proposed method and (green and red) two
baselines. The first and the second hit rates
indicate the robot finds the correct sound
source locations within one and two visits,
respectively. The color strips indicate the 95%
confidence interval over 100 trails.

We compared the proposed method with three baselines:
1. HARAM+GCC: Combine HARAM algorithm with GCCPHAT and geometry

features;
2. HARAM+GCCFB: Add a mel-scale filter bank designed for human voice on top

of the GCCPHAT;
3. MLP + AE: Use an incremental learning version of the MLP classification

method instead of HARAM, and learn from the encoded implicit acoustic feature.

Our approach:
Given a verbal command from a
user, the proposed incremental
learning framework:
(i) Rank the priority of the rooms to

be explored, indicated by the
height of the blue bars;

(ii) Explore the rooms following the
ranking order;

(iii) A detection of the user leads to a
positive labeled sample of the
training data on-the-fly.

Advantages:
• Does not require pre-collected data
• Directly appliacble to real-world

scenarios without any human
supervisions or interventions.

Fig 2. (left) Eddiebot robot setup. A Kinect v2
RGB-D sensor is mounted in the front. A uniform
circular microphone array containing 16
microphones is placed on the top. The robot and all
the sensors are connected to an on-board laptop
that runs the learning algorithm in real-time.
(right) A multi-room environment used in
experiments. The robot stations in the hallway and
the sound sources are in room 1, 2, and 3 with an
increasing room complexity.

Fig 3. (Top) Examples of the human
pose detection. (Bottom) Non-detection
examples.

Open-sourced dependencies:
• Google WebRTC for VAD
• RTAB-Map for SLAM
• OpenPose for human detection
• ROS ipa_room_segmentation

Fig 4. The robot visits the room subsequently following the rank predicted by the model. The red,
green, and blue trajectories indicate the first, second, and third rooms the robot visits.

Fig 5. Testing in a physical environment, in which the
robot locates the correct sound source with only one visit.

Learning: The neural activation function for each room 𝑇𝑇𝑘𝑘 is calculated and the
maximal 𝑇𝑇∗ is selected:

Fig 6. The number of incorrect visits
before finding the correct sound source
locations in every 10 samples over 100
trails. The number of mistakes
decreases rapidly.

where 𝚽𝚽 = (𝜙𝜙,𝜙𝜙𝒄𝒄) is the input features, ℛ = 𝑟𝑟, 𝑟𝑟𝒄𝒄 is the number of rooms, 𝝎𝝎𝑘𝑘
𝜙𝜙

and 𝝎𝝎𝑘𝑘
𝑟𝑟 are their corresponding weight vectors. 𝛼𝛼𝜙𝜙 > 0, 𝛼𝛼𝑟𝑟 > 0, and 𝛾𝛾 ∈ [0, 1] are

the learning parameters.
The weight vectors are adjusted incrementally during the learning:

Ranking: Sorting {𝑇𝑇𝑘𝑘} by their relative magnitudes. The order of 𝑇𝑇𝑘𝑘 implies the
ranking of the candidate rooms based on the current sample received.

Self-supervision via Active Exploration: 

Fig 8. By maintaining uniform microphone
placements, we compare the current 16-
microphone setup with 2, 4, and 8-microphone
setups. The mean accuracy of the proposed
method using four different microphone array
configurations. The color strips indicates the
95% confidence interval over 100 trails.

We also investigated the performances using the current 16-microphone setup
with only 2, 4, and 8-microphone. Overall, more microphones lead to a better
performance with minor fluctuations in the early stage.
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