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Abstract
We propose a systematic learning-based approach to the generation of massive quantities of synthetic 3D scenes and arbitrary
numbers of photorealistic 2D images thereof, with associated ground truth information, for the purposes of training, bench-
marking, and diagnosing learning-based computer vision and robotics algorithms. In particular, we devise a learning-based
pipeline of algorithms capable of automatically generating and rendering a potentially infinite variety of indoor scenes by
using a stochastic grammar, represented as an attributed Spatial And-Or Graph, in conjunction with state-of-the-art physics-
based rendering. Our pipeline is capable of synthesizing scene layouts with high diversity, and it is configurable inasmuch
as it enables the precise customization and control of important attributes of the generated scenes. It renders photorealistic
RGB images of the generated scenes while automatically synthesizing detailed, per-pixel ground truth data, including visible
surface depth and normal, object identity, and material information (detailed to object parts), as well as environments (e.g.,
illuminations and camera viewpoints). We demonstrate the value of our synthesized dataset, by improving performance in
certain machine-learning-based scene understanding tasks—depth and surface normal prediction, semantic segmentation,
reconstruction, etc.—and by providing benchmarks for and diagnostics of trained models by modifying object attributes and
scene properties in a controllable manner.
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1 Introduction

Recent advances in visual recognition and classification
throughmachine-learning-based computer vision algorithms
have produced results comparable to or in some cases exceed-
ing human performance (e.g., Everingham et al. 2015; He
et al. 2015) by leveraging large-scale, ground-truth-labeled
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RGB datasets (Deng et al. 2009; Lin et al. 2014). How-
ever, indoor scene understanding remains a largely unsolved
challenge due in part to the current limitations of RGB-D
datasets available for training purposes. To date, the most
commonly used RGB-D dataset for scene understanding is
the NYU-Depth V2 dataset (Silberman et al. 2012), which
comprises only 464 scenes with only 1449 labeled RGB-
D pairs, while the remaining 407,024 pairs are unlabeled.
This is insufficient for the supervised training of modern
vision algorithms, especially those based on deep learning.
Furthermore, the manual labeling of per-pixel ground truth
information, including the (crowd-sourced) labeling ofRGB-
D images captured by Kinect-like sensors, is tedious and
error-prone, limiting both its quantity and accuracy.

To address this deficiency, the use of synthetic image
datasets as training data has increased. However, insuffi-
cient effort has been devoted to the learning-based systematic
generation of massive quantities of sufficiently complex
synthetic indoor scenes for the purposes of training scene
understanding algorithms. This is partially due to the diffi-
culties of devising sampling processes capable of generating
diverse scene configurations, and the intensive computa-
tional costs of photorealistically rendering large-scale scenes.
Aside from a few efforts in generating small-scale synthetic
scenes, which wewill review in Sect. 1.1, a noteworthy effort
was recently reported by Song et al. (2014), in which a large
scene layout dataset was downloaded from the Planner5D
website.

By comparison, our work is unique in that we devise a
complete learning-based pipeline for synthesizing large scale
learning-based configurable scene layouts via stochastic
sampling, in conjunction with photorealistic physics-based
rendering of these scenes with associated per-pixel ground
truth to serve as training data. Our pipeline has the following
characteristics:

• Byutilizing a stochastic grammarmodel, one represented
by an attributed Spatial And-Or Graph (S-AOG), our
sampling algorithm combines hierarchical compositions
and contextual constraints to enable the systematic gen-
eration of 3D scenes with high variability, not only at the
scene level (e.g., control of size of the room and the num-
ber of objects within), but also at the object level (e.g.,
control of the material properties of individual object
parts).

• As Fig. 1 shows, we employ state-of-the-art physics-
based rendering, yieldingphotorealistic synthetic images.
Our advanced rendering enables the systematic sampling
of an infinite variety of environmental conditions and
attributes, including illumination conditions (positions,
intensities, colors, etc., of the light sources), camera
parameters (Kinect, fisheye, panorama, camera models

and depth of field, etc.), and object properties (color, tex-
ture, reflectance, roughness, glossiness, etc.).

Since our synthetic data are generated in a forward
manner—by rendering 2D images from3Dscenes containing
detailed geometric object models—ground truth information
is naturally available without the need for any manual label-
ing. Hence, not only are our rendered images highly realistic,
but they are also accompanied by perfect, per-pixel ground
truth color, depth, surface normals, and object labels.

In our experimental study, we demonstrate the use-
fulness of our dataset by improving the performance of
learning-basedmethods in certain scene understanding tasks;
specifically, the prediction of depth and surface normals from
monocular RGB images. Furthermore, by modifying object
attributes and scene properties in a controllable manner, we
provide benchmarks for and diagnostics of trainedmodels for
common scene understanding tasks; e.g., depth and surface
normal prediction, semantic segmentation, reconstruction,
etc.

1.1 RelatedWork

Synthetic image datasets have recently been a source of train-
ing data for object detection and correspondence matching
(Stark et al. 2010; Sun andSaenko2014;SongandXiao2014;
Fanello et al. 2014; Dosovitskiy et al. 2015; Peng et al. 2015;
Zhou et al. 2016; Gaidon et al. 2016;Movshovitz-Attias et al.
2016;Qi et al. 2016), single-view reconstruction (Huang et al.
2015), view-point estimation (Movshovitz-Attias et al. 2014;
Su et al. 2015), 2D human pose estimation (Pishchulin et al.
2012; Romero et al. 2015; Qiu 2016), 3D human pose esti-
mation (Shotton et al. 2013; Shakhnarovich et al. 2003; Yasin
et al. 2016; Du et al. 2016; Ghezelghieh et al. 2016; Rogez
and Schmid 2016; Zhou et al. 2016; Chen et al. 2016; Varol
et al. 2017), depth prediction (Su et al. 2014), pedestrian
detection (Marin et al. 2010; Pishchulin et al. 2011; Vázquez
et al. 2014; Hattori et al. 2015), action recognition (Rahmani
andMian 2015, 2016; Roberto de et al. 2017), semantic seg-
mentation (Richter et al. 2016), scene understanding (Handa
et al. 2016b; Kohli et al. 2016; Qiu and Yuille 2016; Handa
et al. 2016a), as well as in benchmark datasets (Handa et al.
2014). Previously, synthetic imagery, generated on the fly,
online, had been used in visual surveillance (Qureshi and
Terzopoulos 2008) and active vision / sensorimotor con-
trol (Terzopoulos and Rabie 1995). Although prior work
demonstrates the potential of synthetic imagery to advance
computer vision research, to our knowledge no large syn-
thetic RGB-D dataset of learning-based configurable indoor
scenes has previously been released.

3D layout synthesis algorithms (Yu et al. 2011; Handa et al.
2016b) have been developed to optimize furniture arrange-
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Fig. 1 a An example automatically-generated 3D bedroom scene, ren-
dered as a photorealistic RGB image, along with its b per-pixel ground
truth (from top) surface normal, depth, and object identity images.
c Another synthesized bedroom scene. Synthesized scenes include
fine details—objects (e.g., duvet and pillows on beds) and their tex-

tures are changeable, by sampling the physical parameters of materials
(reflectance, roughness, glossiness, etc..), and illumination parameters
are sampled from continuous spaces of possible positions, intensities,
and colors.d–gRendered images of four other example synthetic indoor
scenes—d bedroom, e bathroom, f study, g gym

ments based on pre-defined constraints, where the number
and categories of objects are pre-specified and remain the
same. By contrast, we sample individual objects and create
entire indoor scenes from scratch. Some work has studied
fine-grained object arrangement to address specific prob-
lems; e.g., utilizing user-provided examples to arrange small
objects (Fisher et al. 2012; Yu et al. 2016), and optimizing the
number of objects in scenes using LARJ-MCMC (Yeh et al.
2012). To enhance realism, (Merrell et al. 2011) developed
an interactive system that provides suggestions according to
interior design guidelines.

Image synthesis has been attempted using various deepneural
network architectures, including recurrent neural networks
(RNNs) (Gregor et al. 2015), generative adversarial net-
works (GANs) (Wang and Gupta 2016; Radford et al. 2015),
inverse graphics networks (Kulkarni et al. 2015), and gen-
erative convolutional networks (Lu et al. 2016; Xie et al.
2016b, a). However, images of indoor scenes synthesized
by these models often suffer from glaring artifacts, such as
blurred patches. More recently, some applications of general
purpose inverse graphics solutions using probabilistic pro-
gramming languages have been reported (Mansinghka et al.
2013; Loper et al. 2014; Kulkarni et al. 2015). However,
the problem space is enormous, and the quality and speed

of inverse graphics “renderings” is disappointingly low and
slow.
Stochastic scene grammar models have been used in com-
puter vision to recover 3Dstructures fromsingle-view images
for both indoor (Zhao et al. 2013; Liu et al. 2014) and out-
door (Liu et al. 2014) scene parsing. In the present paper,
instead of solving visual inverse problems, we sample from
the grammar model to synthesize, in a forward manner, large
varieties of 3D indoor scenes.

Domain adaptation is not directly involved in our work, but
it can play an important role in learning from synthetic data,
as the goal of using synthetic data is to transfer the learned
knowledge and apply it to real-world scenarios. A review of
existing work in this area is beyond the scope of this paper;
we refer the reader to a recent survey (Csurka 2017). Tra-
ditionally, domain adaptation techniques can be divided into
four categories: (i) covariate shift with shared support (Heck-
man 1977;Gretton et al. 2009; Cortes et al. 2008; Bickel et al.
2009), (ii) learning shared representations (Blitzer et al. 2006;
Ben-David et al. 2007; Mansour et al. 2009), (iii) feature-
based learning (Evgeniou and Pontil 2004; Daumé III 2007;
Weinberger et al. 2009), and (iv) parameter-based learning
(Chapelle and Harchaoui 2005; Yu et al. 2005; Xue et al.
2007; Daumé III 2009). Given the recent popularity of deep
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learning, researchers have started to apply deep features to
domain adaptation (e.g., Ganin and Lempitsky 2015; Tzeng
et al. 2015).

1.2 Contributions

The present paper makes five major contributions:

1. To our knowledge, ours is the first work that, for
the purposes of indoor scene understanding, introduces
a learning-based configurable pipeline for generating
massive quantities of photorealistic images of indoor
scenes with perfect per-pixel ground truth, including
color, surface depth, surface normal, and object iden-
tity. The parameters and constraints are automatically
learned from the SUNCG (Song et al. 2014) and
ShapeNet (Chang et al. 2015) datasets.

2. For scene generation, we propose the use of a stochastic
grammar model in the form of an attributed Spatial And-
Or Graph (S-AOG). Our model supports the arbitrary
addition and deletion of objects and modification of their
categories, yielding significant variation in the resulting
collection of synthetic scenes.

3. By precisely customizing and controlling important
attributes of the generated scenes, we provide a set of
diagnostic benchmarks of previous work on several com-
mon computer vision tasks. To our knowledge, ours is the
first paper to provide comprehensive diagnostics with
respect to algorithm stability and sensitivity to certain
scene attributes.

4. We demonstrate the effectiveness of our synthesized
scene dataset by advancing the state-of-the-art in the pre-
diction of surface normals and depth from RGB images.

2 Representation and Formulation

2.1 Representation: Attributed Spatial And-Or
Graph

A scene model should be capable of: (i) representing the
compositional/hierarchical structure of indoor scenes, and
(ii) capturing the rich contextual relationships between dif-
ferent components of the scene. Specifically,

• Compositional hierarchy of the indoor scene structure
is embedded in a graph representation that models
the decomposition into sub-components and the switch
among multiple alternative sub-configurations. In gen-
eral, an indoor scene can first be categorized into different
indoor settings (i.e., bedrooms, bathrooms, etc.), each of
which has a set of walls, furniture, and supported objects.
Furniture can be decomposed into functional groups that

are composed of multiple pieces of furniture; e.g., a
“work” functional group may consist of a desk and a
chair.

• Contextual relations between pieces of furniture are help-
ful in distinguishing the functionality of each furniture
item and furniture pairs, providing a strong constraint
for representing natural indoor scenes. In this paper, we
consider four types of contextual relations: (i) relations
between furniture pieces and walls; (ii) relations among
furniture pieces; (iii) relations between supported objects
and their supporting objects (e.g., monitor and desk); and
(iv) relations between objects of a functional pair (e.g.,
sofa and TV).

Representation We represent the hierarchical structure of
indoor scenes by an attributed Spatial And-Or Graph (S-
AOG), which is a Stochastic Context-Sensitive Grammar
(SCSG) with attributes on the terminal nodes. An example is
shown in Fig. 2. This representation combines (i) a stochas-
tic context-free grammar (SCFG) and (ii) contextual relations
defined on a Markov random field (MRF); i.e., the horizon-
tal links among the terminal nodes. The S-AOG represents
the hierarchical decompositions from scenes (top level) to
objects (bottom level), whereas contextual relations encode
the spatial and functional relations through horizontal links
between nodes.

Definitions Formally, an S-AOG is denoted by a 5-tuple:
G = 〈S, V , R, P, E〉, where S is the root node of the
grammar, V = VNT ∪ VT is the vertex set that includes non-
terminal nodes VNT and terminal nodes VT, R stands for the
production rules, P represents the probability model defined
on the attributed S-AOG, and E denotes the contextual rela-
tions represented as horizontal links between nodes in the
same layer.

Non-terminal Nodes The set of non-terminal nodes VNT =
VAnd ∪ VOr ∪ V Set is composed of three sets of nodes: And-
nodes VAnd denoting a decomposition of a large entity, Or-
nodes VOr representing alternative decompositions, and Set-
nodes V Set of which each child branch represents anOr-node
on the number of the child object. The Set-nodes are compact
representations of nested And-Or relations.

Production Rules Corresponding to the three different types
of non-terminal nodes, three types of production rules are
defined:

1. And rules for an And-node v ∈ VAnd are defined as the
deterministic decomposition

v → u1 · u2 · . . . · un(v). (1)
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Contextual relations
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Set-node
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Fig. 2 Scene grammar as an attributed S-AOG. The terminal nodes
of the S-AOG are attributed with internal attributes (sizes) and exter-
nal attributes (positions and orientations). A supported object node is
combined by an address terminal node and a regular terminal node,
indicating that the object is supported by the furniture pointed to by

the address node. If the value of the address node is null, the object is
situated on the floor. Contextual relations are defined between walls and
furniture, among different furniture pieces, between supported objects
and supporting furniture, and for functional groups

2. Or rules for anOr-node v ∈ VOr, are defined as the switch

v → u1|u2| . . . |un(v), (2)

with ρ1|ρ2| . . . |ρn(v).
3. Set rules for a Set-node v ∈ V Set are defined as

v → (nil|u11|u21| . . .) . . . (nil|u1n(v)|u2n(v)| . . .), (3)

with (ρ1,0|ρ1,1|ρ1,2| . . .) . . . (ρn(v),0|ρn(v),1|ρn(v),2| . . .),
where uki denotes the case that object ui appears k times,
and the probability is ρi,k .

Terminal Nodes The set of terminal nodes can be divided
into two types: (i) regular terminal nodes v ∈ Vr

T represent-
ing spatial entities in a scene, with attributes A divided into
internal Ain (size) and external Aex (position and orientation)
attributes, and (ii) address terminal nodes v ∈ V a

T that point
to regular terminal nodes and take values in the set Vr

T ∪{nil}.
These latter nodes avoid excessively dense graphs by encod-
ing interactions that occur only in a certain context (Fridman
2003).

Contextual Relations The contextual relations E = Ew ∪
E f ∪ Eo ∪ Eg among nodes are represented by horizontal
links in the AOG. The relations are divided into four subsets:

1. relations between furniture pieces and walls Ew;
2. relations among furniture pieces E f ;
3. relations between supported objects and their supporting

objects Eo (e.g., monitor and desk); and
4. relations between objects of a functional pair Eg (e.g.,

sofa and TV).

Accordingly, the cliques formed in the terminal layer may
also be divided into four subsets: C = Cw ∪ C f ∪ Co ∪ Cg .

Note that the contextual relations of nodeswill be inherited
from their parents; hence, the relations at a higher level will
eventually collapse into cliquesC among the terminal nodes.
These contextual relations also form anMRF on the terminal
nodes. To encode the contextual relations, we define different
types of potential functions for different kinds of cliques.

Parse Tree A hierarchical parse tree pt instantiates the S-
AOG by selecting a child node for the Or-nodes as well as
determining the state of each child node for the Set-nodes.
A parse graph pg consists of a parse tree pt and a number
of contextual relations E on the parse tree: pg = (pt, Ept).
Figure 3 illustrates a simple example of a parse graph and
four types of cliques formed in the terminal layer.

2.2 Probabilistic Formulation

The purpose of representing indoor scenes using an S-AOG
is to bring the advantages of compositional hierarchy and
contextual relations to bear on the generation of realistic and
diverse novel/unseen scene configurations from a learned S-
AOG. In this section, we introduce the related probabilistic
formulation.

Prior We define the prior probability of a scene configura-
tion generated by an S-AOG using the parameter set Θ . A
scene configuration is represented by pg, including objects
in the scene and their attributes. The prior probability of pg
generated by an S-AOG parameterized by Θ is formulated
as a Gibbs distribution,

p(pg|Θ) = 1

Z
exp

(−E (pg|Θ)
)

(4)
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Monitor
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Supported
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(b) (c)

(d) (e)

Fig. 3 a A simplified example of a parse graph of a bedroom. The
terminal nodes of the parse graph form an MRF in the bottom layer.
Cliques are formed by the contextual relations projected to the bottom
layer. b–e give an example of the four types of cliques, which represent
different contextual relations

= 1

Z
exp

(−E (pt|Θ) − E (Ept |Θ)
)
, (5)

where E (pg|Θ) is the energy function associated with the
parse graph, E (pt|Θ) is the energy function associated with
a parse tree, and E (Ept |Θ) is the energy function associated
with the contextual relations. Here, E (pt|Θ) is defined as
combinations of probability distributions with closed-form
expressions, and E (Ept |Θ) is defined as potential functions
relating to the external attributes of the terminal nodes.

Energy of the Parse Tree Energy E (pt|Θ) is further decom-
posed into energy functions associated with different types
of non-terminal nodes, and energy functions associated with
internal attributes of both regular and address terminal nodes:

E (pt|Θ) =
∑

v∈VOr

E Or
Θ (v) +

∑

v∈V Set

E Set
Θ (v)

︸ ︷︷ ︸
non-terminal nodes

+
∑

v∈Vr
T

E Ain
Θ (v)

︸ ︷︷ ︸
terminal nodes

, (6)

where the choice of child nodeof anOr-nodev ∈ VOr follows
a multinomial distribution, and each child branch of a Set-
node v ∈ V Set follows a Bernoulli distribution. Note that the
And-nodes are deterministically expanded; hence, (6) lacks
an energy term for the And-nodes. The internal attributes Ain

(size) of terminal nodes follows a non-parametric probability
distribution learned via kernel density estimation.
Energy of the Contextual Relations The energy E (Ept |Θ) is
described by the probability distribution

p(Ept |Θ) = 1

Z
exp

(−E (Ept |Θ)
)

(7)

=
∏

c∈Cw

φw(c)
∏

c∈C f

φ f (c)
∏

c∈Co

φo(c)
∏

c∈Cg

φg(c), (8)

which combines the potentials of the four types of cliques
formed in the terminal layer. The potentials of these cliques
are computed based on the external attributes of regular ter-
minal nodes:

1. Potential function φw(c) is defined on relations between
walls and furniture (Fig. 3b). A clique c ∈ Cw includes a
terminal node representing a piece of furniture f and the
terminal nodes representing walls {wi }: c = { f , {wi }}.
Assuming pairwise object relations, we have

φw(c) = 1

Z
exp

(
−λw ·

〈 ∑

wi �=w j

lcon(wi , w j )

︸ ︷︷ ︸
constraint between walls

,

∑

wi

[ldis( f , wi ) + lori( f , wi )]

︸ ︷︷ ︸
constraint between walls and furniture

〉)
, (9)

where λw is a weight vector, and lcon, ldis, lori are three
different cost functions:

(a) The cost function lcon(wi , w j ) defines the consis-
tency between the walls; i.e., adjacent walls should
be connected, whereas oppositewalls should have the
same size. Although this term is repeatedly computed
in different cliques, it is usually zero as the walls are
enforced to be consistent in practice.

(b) The cost function ldis(xi , x j ) defines the geometric
distance compatibility between two objects

ldis(xi , x j ) = |d(xi , x j ) − d̄(xi , x j )|, (10)

where d(xi , x j ) is the distance between object xi and
x j , and d̄(xi , x j ) is the mean distance learned from
all the examples.
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(c) Similarly, the cost function lori(xi , x j ) is defined as

lori(xi , x j ) = |θ(xi , x j ) − θ̄ (xi , x j )|, (11)

where θ(xi , x j ) is the distance between object xi and
x j , and θ̄ (xi , x j ) is the mean distance learned from
all the examples. This term represents the compati-
bility between two objects in terms of their relative
orientations.

2. Potential function φ f (c) is defined on relations between
pieces of furniture (Fig. 3c). A clique c ∈ C f includes
all the terminal nodes representing a piece of furniture:
c = { fi }. Hence,

φ f (c) = 1

Z
exp

(
−λc

∑

fi �= f j

locc( fi , f j )

)
, (12)

where the cost function locc( fi , f j ) defines the compat-
ibility of two pieces of furniture in terms of occluding
accessible space

locc( fi , f j ) = max(0, 1 − d( fi , f j )/dacc). (13)

3. Potential function φo(c) is defined on relations between
a supported object and the furniture piece that supports
it (Fig. 3d). A clique c ∈ Co consists of a supported
object terminal node o, the address node a connected to
the object, and the furniture terminal node f pointed to
by the address node c = { f , a, o}:

φo(c) = 1

Z
exp

(−λo · 〈
lpos( f , o), lori( f , o), ladd(a)

〉)
,

(14)

which incorporates three different cost functions. The
cost function lori( f , o) has been defined for potential
function φw(c), and the two new cost functions are as
follows:

(a) The cost function lpos( f , o) defines the relative posi-
tion of the supported object o to the four boundaries

of the bounding box of the supporting furniture f :

lpos( f , o) =
∑

i

ldis( ffacei , o). (15)

(b) The cost term ladd(a) is the negative log probability of
an address node v ∈ V a

T , which is regarded as a cer-
tain regular terminal node and follows a multinomial
distribution.

4. Potential function φg(c) is defined for furniture in the
same functional group (Fig. 3d). A clique c ∈ Cg consists
of terminal nodes representing furniture in a functional
group g: c = { f gi }:

φg(c) = 1

Z
exp

(
−

∑

f gi �= f gj

λg · 〈ldis( f gi , f gj ), lori( f
g
i , f gj )

〉)
.

(16)

3 Learning, Sampling, and Synthesis

Before we introduce in Sect. 3.1 the algorithm for learn-
ing the parameters associated with an S-AOG, note that our
configurable scene synthesis pipeline includes the following
components:

• A sampling algorithm based on the learned S-AOG for
synthesizing realistic scene geometric configurations.
This sampling algorithm controls the size of the indi-
vidual objects as well as their pair-wise relations. More
complex relations are recursively formed using pair-
wised relations. The details are found in Sect. 3.2.

• An attribute assignment process, which sets different
material attributes to each object part, as well as various
camera parameters and illuminations of the environment.
The details are found in Sect. 3.4.

The above two components are the essence of config-
urable scene synthesis; the first generates the structure of
the scene while the second controls its detailed attributes.

Fig. 4 The learning-based pipeline for synthesizing images of indoor scenes
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In between these two components, a scene instantiation pro-
cess is applied to generate a 3D mesh of the scene based on
the sampled scene layout. This step is described in Sect. 3.3.
Figure 4 illustrates the pipeline.

3.1 Learning the S-AOG

The parameters Θ of a probability model can be learned
in a supervised way from a set of N observed parse trees
{ptn}n=1,...,N by maximum likelihood estimation (MLE):

Θ∗ = argmax
Θ

N∏

n=1

p(ptn|Θ). (17)

We now describe how to learn all the parameters Θ , with the
focus on learning the weights of the loss functions.

Weights of the Loss Functions Recall that the probability
distribution of cliques formed in the terminal layer is given
by (8); i.e.,

p(Ept |Θ) = 1

Z
exp

(−E (Ept |Θ)
)

(18)

= 1

Z
exp

(−λ · l(Ept)
)
, (19)

where λ is the weight vector and l(Ept) is the loss vector
given by the four different types of potential functions. To
learn the weight vector, the traditional MLE maximizes the
average log-likelihood

L (Ept |Θ) = 1

N

N∑

n=1

log p(Eptn |Θ) (20)

= − 1

N

N∑

n=1

λ · l(Eptn) − log Z , (21)

usually by energy gradient ascent:

∂L (Ept |Θ)

∂λ

= − 1

N

N∑

n=1

l(Eptn) − ∂ log Z

∂λ
(22)

= − 1

N

N∑

n=1

l(Eptn) − ∂ log
∑

pt exp
(−λ · l(Ept)

)

∂λ
(23)

= − 1

N

N∑

n=1

l(Eptn) +
∑

pt

1

Z
exp

(−λ · l(Ept)
)
l(Ept) (24)

= − 1

N

N∑

n=1

l(Eptn) + 1

Ñ

Ñ∑

ñ=1

l(Ept̃n), (25)

where {Ept̃n }̃n=1,...,Ñ is the set of synthesized examples from
the current model.

Unfortunately, it is computationally infeasible to sample
a Markov chain that turns into an equilibrium distribution at
every iteration of gradient descent. Hence, instead of waiting
for the Markov chain to converge, we adopt the contrastive
divergence (CD) learning that follows the gradient of the
difference of two divergences (Hinton 2002):

CDÑ = KL(p0||p∞) − KL(pñ||p∞), (26)

where KL(p0||p∞) is the Kullback–Leibler divergence
between the data distribution p0 and the model distribution
p∞, and pñ is the distribution obtained by a Markov chain
started at the data distribution and run for a small number
ñ of steps (e.g., ñ = 1). Contrastive divergence learning
has been applied effectively in addressing various prob-
lems, most notably in the context of Restricted Boltzmann
Machines (Hinton and Salakhutdinov 2006). Both theoret-
ical and empirical evidence corroborates its efficiency and
very small bias (Carreira-Perpinan and Hinton 2005). The
gradient of the contrastive divergence is given by:

∂CDÑ

∂λ
= 1

N

N∑

n=1

l(Eptn) − 1

Ñ

Ñ∑

ñ=1

l(Ept̃n)

− ∂ pñ
∂λ

∂KL(pñ||p∞)

∂ pñ
. (27)

Extensive simulations (Hinton 2002) showed that the third
term can be safely ignored since it is small and seldom
opposes the resultant of the other two terms.

Finally, the weight vector is learned by gradient descent
computed by generating a small number ñ of examples from
the Markov chain

λt+1 = λt − ηt
∂CDÑ

∂λ
(28)

= λt + ηt

⎛

⎝ 1

Ñ

Ñ∑

ñ=1

l(Ept̃n) − 1

N

N∑

n=1

l(Eptn)

⎞

⎠ . (29)

Or-nodes and Address-nodes The MLE of the branching
probabilities of Or-nodes and address terminal nodes is
simply the frequency of each alternative choice (Zhu and
Mumford 2007):

ρi = #(v → ui )
∑n(v)

j=1 #(v → u j )
; (30)

however, the samples we draw from the distributions will
rarely cover all possible terminal nodes to which an address
node is pointing, since there are many unseen but plausi-
ble configurations. For instance, an apple can be put on a
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chair, which is semantically and physically plausible, but the
training examples are highly unlikely to include such a case.
Inspired by the Dirichlet process, we address this issue by
altering the MLE to include a small probability α for all
branches:

ρi = #(v → ui ) + α

n(v)∑

j=1
(#(v → u j ) + α)

. (31)

Set-nodes Similarly, for each child branch of the Set-nodes,
we use the frequency of samples as the probability, if it is
non-zero, otherwise we set the probability to α. Based on the
common practice—e.g., choosing the probability of joining a
new table in the Chinese restaurant process (Aldous 1985)—
we set α to have probability 1.

Parameters To learn the S-AOG for sampling purposes, we
collect statistics using the SUNCGdataset (Song et al. 2014),
which contains over 45K different scenes with manually
created realistic room and furniture layouts. We collect the
statistics of room types, room sizes, furniture occurrences,
furniture sizes, relative distances and orientations between
furniture and walls, furniture affordance, grouping occur-
rences, and supporting relations.

The parameters of the loss functions are learned from the
constructed scenes by computing the statistics of relative dis-
tances and relative orientations between different objects.

The grouping relations are manually defined (e.g., night-
stands are associated with beds, chairs are associated with
desks and tables). We examine each pair of furniture pieces
in the scene, and a pair is regarded as a group if the distance
of the pieces is smaller than a threshold (e.g., 1m). The prob-
ability of occurrence is learned as a multinomial distribution.
The supporting relations are automatically discovered from
the dataset by computing the vertical distance between pairs
of objects and checking if one bounding polygon contains
another.

The distribution of object size among all the furniture and
supported objects is learned from the 3D models provided
by the ShapeNet dataset (Chang et al. 2015) and the SUNCG
dataset (Song et al. 2014). We first extracted the size infor-
mation from the 3Dmodels, and then fitted a non-parametric
distribution using kernel density estimation. Not only is this
more accurate than simply fitting a trivariate normal distri-
bution, but it is also easier to sample from.

3.2 Sampling Scene Geometry Configurations

Based on the learned S-AOG, we sample scene configura-
tions (parse graphs) based on the prior probability p(pg|Θ)

using a Markov Chain Monte Carlo (MCMC) sampler. The
sampling process comprises two major steps:

Algorithm 1: Sampling Scene Configurations
Input : Attributed S-AOG G

Landscape parameter β

sample number n
Output: Synthesized room layouts {pgi }i=1,...,n

1 for i = 1 to n do
2 Sample the child nodes of the Set nodes and Or nodes from G

directly to obtain the structure of pgi .
3 Sample the sizes of room, furniture f , and objects o in pgi

directly.
4 Sample the address nodes V a .
5 Randomly initialize positions and orientations of furniture f

and objects o in pgi .
6 iter = 0
7 while iter < itermax do
8 Propose a new move and obtain proposal pg′

i .
9 Sample u ∼ unif(0, 1).

10 if u < min(1, exp(β(E (pgi |Θ) − E (pg′
i |Θ)))) then

11 pgi = pg′
i

12 end
13 iter += 1
14 end
15 end

1. Top-down sampling of the parse tree structure pt and
internal attributes of objects. This step selects a branch
for each Or-node and chooses a child branch for each
Set-node. In addition, internal attributes (sizes) of each
regular terminal node are also sampled. Note that this
can be easily done by sampling from closed-form distri-
butions.

2, MCMC sampling of the external attributes (positions and
orientations) of objects aswell as the values of the address
nodes. Samples are proposed by Markov chain dynam-
ics, and are taken after the Markov chain converges to
the prior probability. These attributes are constrained by
multiple potential functions, hence it is difficult to sample
directly from the true underlying probability distribution.

Algorithm 1 overviews the sampling process. Some qualita-
tive results are shown in Fig. 5.

Markov Chain Dynamics To propose moves, four types of
Markov chain dynamics, qi , i = 1, 2, 3, 4, are designed to
be chosen randomly with certain probabilities. Specifically,
the dynamics q1 and q2 are diffusion, while q3 and q4 are
reversible jumps:

1. Translation of ObjectsDynamic q1 chooses a regular ter-
minal node and samples a new position based on the
current position of the object,

pos → pos + δpos, (32)

where δpos follows a bivariate normal distribution.
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Fig. 5 Qualitative results in different types of scenes using default
attributes of object materials, illumination conditions, and camera
parameters; a overhead view; b random view. c, d Additional exam-

ples of two bedrooms, with (from left) image, with corresponding depth
map, surface normal map, and semantic segmentation

2. Rotation of Objects Dynamic q2 chooses a regular ter-
minal node and samples a new orientation based on the
current orientation of the object,

θ → θ + δθ, (33)

where δθ follows a normal distribution.
3. Swapping of Objects Dynamic q3 chooses two regular

terminal nodes and swaps the positions and orientations
of the objects.

4. Swapping of Supporting ObjectsDynamic q4 chooses an
address terminal node and samples a new regular fur-
niture terminal node pointed to. We sample a new 3D
location (x, y, z) for the supported object:

• Randomly sample x = uxwp,whereux ∼ unif(0, 1),
and wp is the width of the supporting object.

• Randomly sample y = uylp, where uy ∼ unif(0, 1),
and l p is the length of the supporting object.

• The height z is simply the height of the supporting
object.

Adopting the Metropolis–Hastings algorithm, a newly
proposed parse graph pg′ is accepted according to the fol-
lowing acceptance probability:

α(pg′|pg,Θ) = min

(
1,

p(pg′|Θ)p(pg|pg′)
p(pg|Θ)p(pg′|pg)

)
(34)

= min

(
1,

p(pg′|Θ)

p(pg|Θ)

)
(35)

= min(1, exp(E (pg|Θ) − E (pg′|Θ))). (36)

The proposal probabilities cancel since the proposed moves
are symmetric in probability.

ConvergenceTo test if theMarkov chain has converged to the
prior probability,wemaintain a histogramof the energyof the
lastw samples.When the difference between two histograms
separated by s sampling steps is smaller than a threshold ε,
the Markov chain is considered to have converged.

Tidiness of Scenes During the sampling process, a typical
state is drawn from the distribution. We can easily control
the level of tidiness of the sampled scenes by adding an extra
parameter β to control the landscape of the prior distribution:

p(pg|Θ) = 1

Z
exp

(−βE (pg|Θ)
)
. (37)

Some examples are shown in Fig. 6.
Note that the parameter β is analogous to but differs

from the temperature in simulated annealing optimization—
the temperature in simulated annealing is time-variant; i.e.,
it changes during the simulated annealing process. In our
model, we simulate a Markov chain under one specific β

to get typical samples at a certain level of tidiness. When
β is small, the distribution is “smooth”; i.e., the differences
between local minima and local maxima are small.

3.3 Scene Instantiation using 3D Object Datasets

Given a generated 3D scene layout, the 3D scene is instanti-
ated by assembling objects into it using 3D object datasets.
We incorporate both the ShapeNet dataset (Chang et al. 2015)
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Fig. 6 Synthesis for different values of β. Each image shows a typical configuration sampled from a Markov chain

and the SUNCG dataset (Song et al. 2014) as our 3D model
dataset. Scene instantiation includes the following five steps:

1. For each object in the scene layout, find themodel that has
the closest length/width ratio to the dimension specified
in the scene layout.

2. Align the orientations of the selected models according
to the orientation specified in the scene layout.

3. Transform themodels to the specified positions, and scale
the models according to the generated scene layout.

4. Since we fit only the length and width in Step 1, an extra
step to adjust the object position along the gravity direc-
tion is needed to eliminate floating models and models
that penetrate into one another.

5. Add the floor, walls, and ceiling to complete the instan-
tiated scene.

3.4 Scene Attribute Configurations

As we generate scenes in a forward manner, our pipeline
enables the precise customization and control of important
attributes of the generated scenes. Some configurations are
shown in Fig. 7. The rendered images are determined by
combinations of the following four factors:

• Illuminations, including the number of light sources, and
the light source positions, intensities, and colors.

• Material and textures of the environment; i.e., the walls,
floor, and ceiling.

• Cameras, such as fisheye, panorama, and Kinect cam-
eras, have different focal lengths and apertures, yielding
dramatically different rendered images. By virtue of
physics-based rendering, our pipeline can even control
the F-stop and focal distance, resulting in different depths
of field.

• Different object materials and textures will have various
properties, represented by roughness, metallicness, and
reflectivity.

4 Photorealistic Scene Rendering

We adopt Physics-Based Rendering (PBR)(Pharr and
Humphreys 2004) to generate the photorealistic 2D images.
PBR has become the industry standard in computer graphics
applications in recent years, and it has been widely adopted
for both offline and real-time rendering. Unlike traditional
rendering techniqueswhere heuristic shaders are used to con-
trol how light is scattered by a surface, PBR simulates the
physics of real-world light by computing the bidirectional
scattering distribution function (BSDF) (Bartell et al. 1981)
of the surface.

Formulation Following the law of conservation of energy,
PBR solves the rendering equation for the total spectral radi-
ance of outgoing light Lo(x,w) in direction w from point x
on a surface as

Lo(x,w) = Le(x,w)

+
∫

Ω

fr (x,w′,w)Li (x,w′)(−w′ · n) dw′, (38)

where Le is the emitted light (from a light source), Ω is the
unit hemisphere uniquely determined by x and its normal, fr
is the bidirectional reflectance distribution function (BRDF),
Li is the incoming light from directionw′, andw′ ·n accounts
for the attenuation of the incoming light.

Advantages In path tracing, the rendering equation is often
computed using Monte Carlo methods. Contrasting what
happens in the real world, the paths of photons in a scene
are traced backwards from the camera (screen pixels) to
the light sources. Objects in the scene receive illumination
contributions as they interact with the photon paths. By com-
puting both the reflected and transmitted components of rays
in a physically accurate way, while conserving energies and
obeying refraction equations, PBR photorealistically renders
shadows, reflections, and refractions, thereby synthesizing
superior levels of visual detail compared to other shading
techniques. Note PBR describes a shading process and does
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Fig. 7 We can configure the scene with different a illumination inten-
sities, b illumination colors, and cmaterials, d even on each object part.
We can also control e the number of light source and their positions, f
camera lenses (e.g., fish eye), g depths of field, or h render the scene as
a panorama for virtual reality and other virtual environments. i Seven
different background wall textures. Note how the background affects

the overall illumination. a Illumination intensity: half and double. b
Illumination color: purple and blue. c Different object materials: metal,
gold, chocolate, and clay. d Different materials in each object part. e
Multiple light sources. f Fish eye lens. g Image with depth of field. h
Panorama image. i Different background materials affect the rendering
results (Color figure online)
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Table 1 Comparisons of rendering time versus quality

Reference Criteria Comparisons

3 × 3 Baseline pixel samples 2 × 2 1 × 1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

0.001 Noise level 0.001 0.001 0.01 0.1 0.001 0.001 0.001 0.001

22 Maximum additional rays 22 22 22 22 10 3 22 22

6 Bounce limit 6 6 6 6 6 6 3 1

203 Time (s) 131 45 196 30 97 36 198 178

LAB Delta E difference

The first column tabulates the reference number and rendering results used in this paper, the second column lists all the criteria, and the remaining
columns present comparative results. The color differences between the reference image and images rendered with various parameters are measured
by the LAB Delta E standard (Sharma and Bala 2002) tracing back to Helmholtz and Hering (Backhaus et al. 1998), Valberg (2007)

not dictate how images are rasterized in screen space. We
use theMantra® PBR engine to render synthetic image data
with ray tracing for its accurate calculation of illumination
and shading as well as its physically intuitive parameter con-
figurability.

Indoor scenes are typically closed rooms. Various reflec-
tive and diffusive surfaces may exist throughout the space.
Therefore, the effect of secondary rays is particularly impor-
tant in achieving realistic illumination. PBR robustly samples
both direct illumination contributions on surfaces from light
sources and indirect illumination from rays reflected and
diffused by other surfaces. The BSDF shader on a surface
manages and modifies its color contribution when hit by a
secondary ray. Doing so results in more secondary rays being
sent out from the surface being evaluated. The reflection limit
(the number of times a ray can be reflected) and the diffuse
limit (the number of times diffuse rays bounce on surfaces)
need to be chosen wisely to balance the final image qual-
ity and rendering time. Decreasing the number of indirect
illumination samples will likely yield a nice rendering time
reduction, but at the cost of significantly diminished visual
realism.

Rendering Time versus Rendering Quality In summary, we
use the following control parameters to adjust the quality and
speed of rendering:

• Baseline pixel samples This is the minimum number of
rays sent per pixel. Each pixel is typically divided evenly
in both directions. Common values for this parameter are
3×3 and 5×5. The higher pixel sample counts are usually
required to producemotion blur and depth of field effects.

• Noise level Different rays sent from each pixel will not
yield identical paths. This parameter determines themax-
imum allowed variance among the different results. If
necessary, additional rays (in addition to baseline pixel
sample count) will be generated to decrease the noise.

• Maximum additional rays This parameter is the upper
limit of the additional rays sent for satisfying the noise
level.

• Bounce limit The maximum number of secondary ray
bounces. We use this parameter to restrict both diffuse
and reflected rays. Note that in PBR the diffuse ray is one
of themost significant contributors to realistic global illu-
mination, while the other parameters are more important
in controlling the Monte Carlo sampling noise.

Table 1 summarizes our analysis of how these parameters
affect the rendering time and image quality.

5 Experiments

In this section, we demonstrate the usefulness of the gener-
ated synthetic indoor scenes from two perspectives:

1. Improving state-of-the-art computer vision models by
training with our synthetic data. We showcase our results
on the task of normal prediction and depth prediction
from a single RGB image, demonstrating the potential of
using the proposed dataset.

2. Benchmarking common scene understanding tasks with
configurable object attributes and various environments,
which evaluates the stabilities and sensitivities of the
algorithms, providing directions and guidelines for their
further improvement in various vision tasks.

The reported results use the reference parameters indi-
cated in Table 1. Using the Mantra renderer, we found
that choosing parameters to produce lower-quality rendering
does not provide training images that suffice to outperform
the state-of-the-art methods using the experimental setup
described below.
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Table 2 Performance of normal
estimation for the NYU-Depth
V2 dataset with different
training protocols

Pre-train Fine-tune Mean↓ Median↓ 11.25◦ ↑ 22.5◦ ↑ 30.0◦ ↑
NYUv2 27.30 21.12 27.21 52.61 64.72

Eigen 22.2 15.3 38.6 64.0 73.9

Zhang et al. (2017) NYUv2 21.74 14.75 39.37 66.25 76.06

Ours+Zhang et al. (2017) NYUv2 21.47 14.45 39.84 67.05 76.72

Fig. 8 Examples of normal estimation results predicted by the model
trained with our synthetic data

5.1 Normal Estimation

Estimating surface normals from a single RGB image is an
essential task in scene understanding, since it provides impor-
tant information in recovering the 3Dstructures of scenes.We
train a neural network using our synthetic data to demonstrate
that the perfect per-pixel ground truth generated using our
pipeline may be utilized to improve upon the state-of-the-art
performance on this specific scene understanding task. Using
the fully convolutional network model described by Zhang
et al. (2017), we compare the normal estimation results given
by models trained under two different protocols: (i) the net-
work is directly trained and tested on the NYU-Depth V2
dataset and (ii) the network is first pre-trained using our syn-
thetic data, then fine-tuned and tested on NYU-Depth V2.

Following the standard protocol (Fouhey et al. 2013;
Bansal et al. 2016), we evaluate a per-pixel error over the
entire dataset. To evaluate the prediction error, we computed
the mean, median, and RMSE of angular error between the
predicted normals and ground truth normals. Prediction accu-
racy is given by calculating the fraction of pixels that are
correct within a threshold t , where t = 11.25◦, 22.5◦, and
30.0◦. Our experimental results are summarized in Table 2.
By utilizing our synthetic data, themodel achieves better per-
formance. From the visualized results in Fig. 8, we can see

that the error mainly accrues in the area where the ground
truth normal map is noisy. We argue that the reason is partly
due to sensor noise or sensing distance limit. Our results indi-
cate the importance of having perfect per-pixel ground truth
for training and evaluation.

5.2 Depth Estimation

Depth estimation is a fundamental and challenging prob-
lem in computer vision that is broadly applicable in scene
understanding, 3D modeling, and robotics. In this task, the
algorithms output a depth image based on a single RGB input
image.

To demonstrate the efficacy of our synthetic data, we com-
pare the depth estimation results provided by models trained
following protocols similar to those we used in normal esti-
mation with the network in Liu et al. (2015). To perform a
quantitative evaluation, we used the metrics applied in pre-
vious work (Eigen et al. 2014):

• Abs relative error: 1
N

∑
p

∣
∣∣dp − dgtp

∣
∣∣/dgtp ,

• Square relative difference: 1
N

∑
p

∣∣∣dp − dgtp
∣∣∣
2
/dgtp ,

• Average log10 error:
1
N

∑
x

∣∣∣log10(dp) − log10(d
gt
p )

∣∣∣,

• RMSE:

(
1
N

∑
x

∣∣∣dp − dgtp
∣∣∣
2
)1/2

,

• Log RMSE:

(
1
N

∑
x

∣∣
∣log(dp) − log(dgtp )

∣∣
∣
2
)1/2

,

• Threshold: % of dp s.t. max (dp/d
gt
p , dgtp /dp) <

threshold,

where dp and dgtp are the predicted depths and the ground
truth depths, respectively, at the pixel indexed by p and N is
the number of pixels in all the evaluated images. The first five
metrics capture the error calculated over all the pixels; lower
values are better. The threshold criteria capture the estimation
accuracy; higher values are better.

Table 3 summarizes the results. We can see that the model
pretrained on our dataset and fine-tuned on the NYU-Depth
V2 dataset achieves the best performance, both in error and
accuracy. Figure 9 shows qualitative results. This demon-
strates the usefulness of our dataset in improving algorithm
performance in scene understanding tasks.
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Table 3 Depth estimation performance on the NYU-Depth V2 dataset with different training protocols

Pre-train Fine-tune Error Accuracy

Abs rel Sqr rel Log10 RMSE (linear) RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253

NYUv2 – 0.233 0.158 0.098 0.831 0.117 0.605 0.879 0.965

Ours – 0.241 0.173 0.108 0.842 0.125 0.612 0.882 0.966

Ours NYUv2 0.226 0.152 0.090 0.820 0.108 0.616 0.887 0.972

Fig. 9 Examples of depth estimation results predicted by the model
trained with our synthetic data

5.3 Benchmark and Diagnosis

In this section, we show benchmark results and provide a
diagnosis of various common computer vision tasks using
our synthetic dataset.

Depth Estimation In the presented benchmark, we evaluated
three state-of-the-art single-image depth estimation algo-
rithms due to Eigen et al. (2014), Eigen and Fergus (2015)
and Liu et al. (2015). We evaluated those three algorithms
with data generated from different settings including illu-
mination intensities, colors, and object material properties.
Table 4 shows a quantitative comparison. We see that both
Eigen et al. (2014) and Eigen and Fergus (2015) are very sen-
sitive to illumination conditions, whereas Liu et al. (2015)
is robust to illumination intensity, but sensitive to illumina-
tion color. All three algorithms are robust to different object
materials. The reason may be that material changes do not
alter the continuity of the surfaces. Note that Liu et al. (2015)
exhibits nearly the same performance on both our dataset and
the NYU-Depth V2 dataset, supporting the assertion that our
synthetic scenes are suitable for algorithm evaluation and
diagnosis.

Normal Estimation Next, we evaluated two surface normal
estimation algorithms due to Eigen and Fergus (2015) and
Bansal et al. (2016). Table 5 summarizes our quantitative
results. Compared to depth estimation, the surface normal
estimation algorithms are stable to different illumination con-
ditions as well as to different material properties. As in depth
estimation, these two algorithms achieve comparable results
on both our dataset and the NYU dataset.

Semantic Segmentation Semantic segmentation has become
one of the most popular tasks in scene understanding since
the development and success of fully convolutional networks
(FCNs). Given a single RGB image, the algorithm outputs a
semantic label for every image pixel.We applied the semantic
segmentation model described by Eigen and Fergus (2015).
Since we have 129 classes of indoor objects whereas the
model only has a maximum of 40 classes, we rearranged
and reduced the number of classes to fit the prediction of the
model. The algorithm achieves 60.5% pixel accuracy and
50.4 mIoU on our dataset.

3D Reconstructions and SLAM We can evaluate 3D recon-
struction and SLAM algorithms using images rendered from
a sequence of camera views. We generated different sets of
images on diverse synthesized scenes with various camera
motion paths and backgrounds to evaluate the effectiveness
of the open-source SLAM algorithm ElasticFusion (Whe-
lan et al. 2015). A qualitative result is shown in Fig. 10.
Some scenes can be robustly reconstructed when we rotate
the camera evenly and smoothly, as well as when both the
background and foreground objects have rich textures. How-
ever, other reconstructed 3D meshes are badly fragmented
due to the failure to register the current frame with previous
frames due to fastmoving cameras or the lack of textures.Our
experiments indicate that our synthetic scenes with config-
urable attributes and background can be utilized to diagnose
the SLAM algorithm, since we have full control of both the
scenes and the camera trajectories.

Object Detection The performance of object detection algo-
rithms has greatly improved in recent years with the appear-
ance and development of region-based convolutional neural
networks. We apply the Faster R-CNN Model (Ren et al.
2015) to detect objects. We again need to rearrange and
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Table 4 Depth estimation

Setting Method Error Accuracy

Abs rel Sqr rel Log10 RMSE (linear) RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253

Original Liu et al. (2015) 0.225 0.146 0.089 0.585 0.117 0.642 0.914 0.987

Eigen et al. (2014) 0.373 0.358 0.147 0.802 0.191 0.367 0.745 0.924

Eigen and Fergus (2015) 0.366 0.347 0.171 0.910 0.206 0.287 0.617 0.863

Intensity Liu et al. (2015) 0.216 0.165 0.085 0.561 0.118 0.683 0.915 0.971

Eigen et al. (2014) 0.483 0.511 0.183 0.930 0.24 0.205 0.551 0.802

Eigen and Fergus (2015) 0.457 0.469 0.201 1.01 0.217 0.284 0.607 0.851

Color Liu et al. (2015) 0.332 0.304 0.113 0.643 0.166 0.582 0.852 0.928

Eigen et al. (2014) 0.509 0.540 0.190 0.923 0.239 0.263 0.592 0.851

Eigen and Fergus (2015) 0.491 0.508 0.203 0.961 0.247 0.241 0.531 0.806

Material Liu et al. (2015) 0.192 0.130 0.08 0.534 0.106 0.693 0.930 0.985

Eigen et al. (2014) 0.395 0.389 0.155 0.823 0.199 0.345 0.709 0.908

Eigen and Fergus (2015) 0.393 0.395 0.169 0.882 0.209 0.291 0.631 0.889

Intensity, color, and material represent the scene with different illumination intensities, colors, and object material properties, respectively

Table 5 Surface normal
estimation

Setting Method Error Accuracy

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Original Eigen and Fergus (2015) 22.74 13.82 32.48 43.34 67.64 75.51

Bansal et al. (2016) 24.45 16.49 33.07 35.18 61.69 70.85

Intensity Eigen and Fergus (2015) 24.15 14.92 33.53 39.23 66.04 73.86

Bansal et al. (2016) 24.20 16.70 32.29 32.00 62.56 72.22

Color Eigen and Fergus (2015) 26.53 17.18 36.36 34.20 60.33 70.46

Bansal et al. (2016) 27.11 18.65 35.67 28.19 58.23 68.31

Material Eigen and Fergus (2015) 22.86 15.33 32.62 36.99 65.21 73.31

Bansal et al. (2016) 24.15 16.76 32.24 33.52 62.50 72.17

Intensity, color, and material represent the setting with different illumination intensities, illumination colors,
and object material properties, respectively

reduce the number of classes for evaluation. Figure 11 sum-
marizes our qualitative results with a bedroom scene. Note
that a change of material can adversely affect the output of
themodel—when thematerial of objects is changed tometal,
the bed is detected as a “car”.

6 Discussion

We now discuss in greater depth four topics related to the
presented work.

Configurable scene synthesisThemost significant distinction
between our work and prior work reported in the literature
is our ability to generate large-scale configurable 3D scenes.
But why is configurable generation desirable, given the fact
that SUNCG (Song et al. 2014) already provided a large
dataset of manually created 3D scenes?

A direct and obvious benefit is the potential to generate
unlimited training data. As shown in a recent report by Sun

et al. (2017), after introducing a dataset 300 times the size of
ImageNet (Deng et al. 2009), the performance of supervised
learning appears to continue to increase linearly in proportion
to the increased volume of labeled data. Such results indicate
the usefulness of labeled datasets on a scale even larger than
SUNCG. Although the SUNCG dataset is large by today’s
standards, it is still a dataset limited by the need to manually
specify scene layouts.

A benefit of using configurable scene synthesis is to diag-
nose AI systems. Some preliminary results were reported in
this paper. In the future, we hope such methods can assist in
building explainable AI. For instance, in the field of causal
reasoning (Pearl 2009), causal induction usually requires
turning on and off specific conditions in order to draw a
conclusion regarding whether or not a causal relation exists.
Generating a scene in a controllable manner can provide a
useful tool for studying these problems.

Furthermore, a configurable pipeline may be used to gen-
erate various virtual environment in a controllable manner in
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Fig. 10 Specifying camera trajectories, we can render scene fly-throughs as sequences of video frames, which may be used to evaluate SLAM
reconstruction (Whelan et al. 2015) results; e.g., a, b a successful reconstruction case and two failure cases due to c, d a fast moving camera and e,
f untextured surfaces

Fig. 11 Benchmark results. aGiven a set of generatedRGB images ren-
deredwith different illuminations andobjectmaterial properties—(from
top) original settings, high illumination, blue illumination, metallic
material properties—we evaluate b–d three depth prediction algo-

rithms, e, f two surface normal estimation algorithms, g a semantic
segmentation algorithm, and h an object detection algorithm (Color
figure online)

order to train virtual agents situated in virtual environments
to learn task planning (Lin et al. 2016; Zhu et al. 2017) and
control policies (Heess et al. 2017; Wang et al. 2017).

The importance of the different energy terms In our exper-
iments, the learned weights of the different energy terms
indicate the importance of the terms. Based on the ranking

from the largest weight to the smallest, the energy terms
are (1) distances between furniture pieces and the nearest
wall, (2) relative orientations of furniture pieces and the
nearest wall, (3) supporting relations, (4) functional group
relations, and (5) occlusions of the accessible space of furni-
ture by other furniture. We can regard such rankings learned
from training data as human preferences of various factors in
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indoor layout designs, which is important for sampling and
generating realistic scenes. For example, one can imagine
that it is more important to have a desk aligned with a wall
(relative distance and orientation), than it is to have a chair
close to a desk (functional group relations).

Balancing rendering time and quality The advantage of
physically accurate representation of colors, reflections, and
shadows comes at the cost of computation. High quality
rendering (e.g., rendering for movies) requires tremendous
amounts of CPU time and computer memory that is prac-
tical only with distributed rendering farms. Low quality
settings are prone to granular rendering noise due to stochas-
tic sampling. Our comparisons between rendering time and
rendering quality serve as a basic guideline for choosing the
values of the rendering parameters. In practice, depending
on the complexity of the scene (such as the number of light
sources and reflective objects), manual adjustment is often
needed in large-scale rendering (e.g., an overview of a city)
in order to achieve the best trade-off between rendering time
and quality. Switching to GPU-based ray tracing engines is a
promising alternative. This direction is especially useful for
scenes with a modest number of polygons and textures that
can fit into a modern GPU memory.

The speed of the sampling processUsingour computing hard-
ware, it takes roughly 3–5min to render a 640 × 480-pixel
image, depending on settings related to illumination, envi-
ronments, and the size of the scene. By comparison, the
sampling process consumes approximately 3min with the
current setup. Although the convergence speed of the Monte
Carlo Markov chain is fast enough relative to photorealis-
tic rendering, it is still desirable to accelerate the sampling
process. In practice, to speed up the sampling and improve
the synthesis quality, we split the sampling process into five
stages: (i) Sample the objects on the wall, e.g., windows,
switches, paints, and lights, (ii) sample the core functional
objects in functional groups (e.g., desks and beds), (iii) sam-
ple the objects that are associated with the core functional
objects (e.g., chairs and nightstands), (iv) sample the objects
that are not paired with other objects (e.g., wardrobes and
bookshelves), and (v) Sample small objects that are sup-
ported by furniture (e.g., laptops and books). By splitting
the sampling process in accordance with functional groups,
we effectively reduce the computational complexity, and
different types of objects quickly converge to their final posi-
tions.

7 Conclusion and FutureWork

Our novel learning-based pipeline for generating and ren-
dering configurable room layouts can synthesize unlimited
quantities of images with detailed, per-pixel ground truth

information for supervised training. We believe that the abil-
ity to generate room layouts in a controllable manner can
benefit various computer vision areas, including but not
limited to depth estimation (Eigen et al. 2014; Eigen and
Fergus 2015; Liu et al. 2015; Laina et al. 2016), surface nor-
mal estimation (Wang et al. 2015; Eigen and Fergus 2015;
Bansal et al. 2016), semantic segmentation (Long et al. 2015;
Noh et al. 2015; Chen et al. 2016), reasoning about object-
supporting relations (Fisher et al. 2011; Silberman et al.
2012; Zheng et al. 2015; Liang et al. 2016), material recogni-
tion (Bell et al. 2013, 2014, 2015; Wu et al. 2015), recovery
of illumination conditions (Nishino et al. 2001; Sato et al.
2003; Kratz and Nishino 2009; Oxholm and Nishino 2014;
Barron and Malik 2015; Hara et al. 2005; Zhang et al. 2015;
Oxholm and Nishino 2016; Lombardi and Nishino 2016),
inference of room layout and scene parsing (Hoiem et al.
2005; Hedau et al. 2009; Lee et al. 2009; Gupta et al. 2010;
Del Pero et al. 2012;Xiao et al. 2012;Zhao et al. 2013;Mallya
andLazebnik 2015;Choi et al. 2015), determination of object
functionality and affordance (Stark and Bowyer 1991; Bar-
Aviv and Rivlin 2006; Grabner et al. 2011; Hermans et al.
2011; Zhao et al. 2013; Gupta et al. 2011; Jiang et al. 2013;
Zhu et al. 2014;Myers et al. 2014;Koppula and Saxena 2014;
Yu et al. 2015; Koppula and Saxena 2016; Roy and Todor-
ovic 2016), and physical reasoning (Zheng et al. 2013, 2015;
Zhu et al. 2015; Wu et al. 2015; Zhu et al. 2016; Wu 2016).
In additional, we believe that research on 3D reconstruction
in robotics and on the psychophysics of human perception
can also benefit from our work.

Our current approach has several limitations that we plan
to address in future research. First, the scene generation
process can be improved using a multi-stage sampling pro-
cess; i.e., sampling large furniture objects first and smaller
objects later, which can potentially improve the scene layout.
Second, we will consider modeling human activity inside
the generated scenes, especially with regard to functional-
ity and affordance. Third, we will consider the introduction
of moving virtual humans into the scenes, which can pro-
vide additional ground truth for human pose recognition,
human tracking, and other human-related tasks. To model
dynamic interactions, a Spatio-Temporal AOG (ST-AOG)
representation is needed to extend the current spatial rep-
resentation into the temporal domain. Such an extension
would unlock the potential to further synthesize outdoor
environments, although a large-scale, structured training
dataset would be needed for learning-based approaches.
Finally, domain adaptation has been shown to be impor-
tant in learning from synthetic data (Ros et al. 2016; López
et al. 2017; Torralba and Efros 2011); hence, we plan
to apply domain adaptation techniques to our synthetic
dataset.
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