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1. Simulated Annealing

The simulated annealing schedule is important for syn-
thesizing realistic scenes. In our experiments, we set the
total sampling iterations to 20000, and it takes around 20
minutes to sample an interior layout. We use the following
simulated schedule for sampling:
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where T'(t) is the temperature at iteration ¢. Geman et al. [5]]
proved that 7'(¢) > m(:fioﬂ) is a necessary and sufficient con-

dition to ensure convergence to the global minimum with
probability one.

2. Data Effectiveness

We further demonstrate that our data can be utilized to
improve performance on two scene understanding tasks:
depth estimation and surface normal estimation from single
RGB images. We show that the performance of state-of-art
methods can be improved when trained with our synthe-
sized data along with natural images.

Depth estimation Single-image depth estimation is a fun-
damental problem in computer vision, which has found
broad applications in scene understanding, 3D modeling,
and robotics. The problem is challenging since no reliable
depth cues are available. In this task, the algorithms output
a depth image based on a single RGB input image.

To demonstrate the efficacy of our synthetic data, we
compare the depth estimation results provided by models
trained following protocols similar to those we used in nor-
mal prediction with the network in [6]]. To perform a quan-
titative evaluation, we used the metrics applied in previous

work [3]]:
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where d,, and dgt are the predicted depths and the ground
truth depths at the pixel indexed by p, respectively, and N
is the number of pixels in all the evaluated images. The first
five metrics capture the error calculated over all the pixels;
lower values are better. The threshold criteria capture the
estimation accuracy; higher values are better.

Table [1| summarizes the results. We can see that the
model pretrained on our dataset and fine-tuned on the NYU-
Depth V2 dataset achieves the best performance, both in er-
ror and accuracy. This demonstrates the usefulness of our
dataset in improving algorithm performance in scene under-
standing tasks.
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Surface normal estimation Predicting surface normals
from a single RGB image is an essential task in scene un-
derstanding since it provides important information in re-
covering the 3D structure of the scenes. We train a neu-
ral network with our synthetic data to demonstrate that the
perfect per-pixel ground truth generated using our pipeline
could be utilized to improve upon the state-of-the-art per-
formance on a specific scene understanding task. Using the
fully convolutional network model described by Zhang et
al. [7l], we compare the normal estimation results given by
models trained under two different protocols: (i) the net-
work is directly trained and tested on the NYU-Depth V2
dataset, and (ii) the network is first pre-trained using our
synthetic data, then fine-tuned and tested on NYU-Depth
V2.

Following the standard evaluation protocol [4 [1], we
evaluate a per-pixel error over the entire dataset. To eval-
uate the prediction error, we computed the mean, median,
and RMSE of angular error between the predicted normals
and ground truth normals. Prediction accuracy is given by



Table 1: Depth estimation with different training protocols.

Error

Accuracy

pre-Train  fine-Tune | AbsRel SqrRel Logl0 RMSE(linear) RMSE(log) | §<1.25 §<1.252 §<1.25°

NYUv2 - 0.233 0.158 0.098 0.831 0.117 0.605 0.879 0.965
Ours - 0.241 0.173 0.108 0.842 0.125 0.612 0.882 0.966
Ours NYUv2 0.226 0.152 0.090 0.820 0.108 0.616 0.887 0.972
Table 2: Normal estimation with different training proto- References

cols.

pre-train fine-tune |mean| median] 11.25°1 22.5°1 30° 1
NYUvV2 27.30 21.12 2721 52.61 64.72
Eigen [2] 22.2 15.3 38.6 64.0 739

[7] NYUv2|21.74 1475 39.37 66.25 76.06

ours+[7] NYUv2 | 21.47 1445 39.84 67.05 76.72

calculating the fraction of pixels that are correct within a
threshold ¢, where ¢t =11.25°,22.5°,30°. Our experimen-
tal results are summarized in Table[2} By utilizing our syn-
thetic data, the model achieves better performance. The er-
ror mainly accrues in the area where the ground truth nor-
mal map is noisy. We argue that part of the reason is due to
the sensor’s noise or sensing distance limit. Such results in
turn imply the importance to have perfect per-pixel ground
truth for training and evaluation.

3. More Qualitative Results
See page 3-9.
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