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Figure 1. Single-view 3D scene reconstruction with high-fidelity shape and texture. (a) Object-level and (b) scene-level reconstruction.
Rendering of color, depth, and normal images from the original and novel viewpoints enables 3D scene editing. (c) Object manipulation
by rotating the object in (a) and scene composition of (a) and (b).

Abstract

Reconstructing detailed 3D scenes from single-view im-
ages remains a challenging task due to limitations in exist-
ing approaches, which primarily focus on geometric shape
recovery, overlooking object appearances and fine shape
details. To address these challenges, we propose a novel
framework for simultaneous high-fidelity recovery of ob-
ject shapes and textures from single-view images. Our ap-
proach utilizes the proposed Single-view neural implicit
Shape and Radiance field (SSR) representations to lever-
age both explicit 3D shape supervision and volume render-
ing of color, depth, and surface normal images. To over-
come shape-appearance ambiguity under partial observa-
tions, we introduce a two-stage learning curriculum incor-
porating both 3D and 2D supervisions. A distinctive fea-
ture of our framework is its ability to generate fine-grained
textured meshes by seamlessly integrating rendering capa-
bilities into the single-view 3D reconstruction model. This
integration enables not only improved textured 3D object
reconstruction by 27.7% and 11.6% on the 3D-FRONT and
Pix3D datasets, respectively, but also supports the render-

ing of images from novel viewpoints. Beyond individual ob-
jects, our approach facilitates composing object-level rep-
resentations into flexible scene representations, thereby en-
abling applications such as holistic scene understanding
and 3D scene editing. We conduct extensive experiments to
demonstrate the effectiveness of our method.

1. Introduction
Single-view 3D reconstruction is a challenging task in com-
puter vision that aims to recover a scene’s 3D geometry and
appearance from a single monocular image. This task holds
immense importance as it allows machines to understand
and interact with the real 3D world, enabling various appli-
cations in virtual reality, augmented reality, and robotics.

The primary obstacle in single-view reconstruction lies
in the inherent uncertainties and ambiguities resulting from
the limited observations provided by a single image. A
model must be able to infer the 3D object shape accurately
based on visible regions while also generating a plausible
representation of unseen object parts present in the image.

https://dali-jack.github.io/SSR


Over the years, various representations and methods
have been proposed to tackle this challenge. Early meth-
ods in this field utilize 3D bounding boxes to parameter-
ize 3D objects and estimate their size, rotation, and trans-
lation [9, 14, 16, 26, 29]. Recent advancements have fo-
cused on recovering detailed object shapes using either ex-
plicit [21, 54] or implicit [32, 41, 46, 87] representations.
However, these approaches suffer from two notable draw-
backs. First, they neglect the importance of object textures,
which contain essential geometric and semantic details for
embodied tasks [20, 28, 47] and 3D vision-language reason-
ing [2, 3, 8, 11, 88]. Second, they often rely solely on image
inputs for feature extraction without taking direct textural
supervision from them [54, 87]. Consequently, these models
tend to focus insufficiently on geometric subtleties and may
learn mean shapes for each object category, leading to chal-
lenges in generating smooth and instance-specific details,
even when instance and pixel-aligned features are utilized
for implicit representation learning [41].

To address the aforementioned limitations and improve
single-view 3D reconstruction, we propose a novel frame-
work that simultaneously recovers shapes and textures
from single-view images. Our framework leverages the
Single-view neural implicit Shape and Radiance field (SSR)
representations. Conditioned on the input image, we ex-
tract pixel-aligned and instance-aligned features to predict
the signed distance function (SDF) value using an implicit
network and the color value using a rendering network for
each query 3D point. By expressing volume density as a
function of the SDF, our model can be trained end-to-end
with both 3D shape supervision and volume rendering
of color, depth, and surface normal images.

However, due to shape-appearance ambiguity, simply in-
corporating rendering supervision may lead to generating
realistic textured images but inconsistent underlying ge-
ometry [12, 53], especially under partial observations. To
tackle this issue and achieve improved coordination be-
tween 2D and 3D supervision, we propose a carefully de-
signed two-stage learning curriculum. This curriculum bal-
ances the rendering and reconstruction losses, allowing our
framework to learn a 3D object prior that reconstructs un-
seen parts from partial observations while capturing pixel-
level fine-grained details from the images.

We extensively evaluate our proposed model for single-
view object reconstruction on both synthetic 3D-FRONT
dataset [19] and real Pix3D dataset [69]. The experimen-
tal results demonstrate that our method excels in recovering
high-fidelity object shapes and textures, significantly out-
performing state-of-the-art methods by 27.7% and 11.6%
on 3D-FRONT and Pix3D, respectively. Through thorough
ablation studies, we demonstrate the benefits of introduc-
ing textural supervision and the importance of the learning
curriculum. We show that our model is capable of rendering

images from novel viewpoints given single-view inputs, and
the quality of the rendered depth and normal is comparable
with existing depth and normal estimators [17, 86]. Finally,
we showcase our model’s capability in holistic scene under-
standing and 3D scene editing, allowing for object transla-
tion, rotation, and composition of objects in 3D space.

In summary, our work represents a significant advance-
ment in single-view 3D reconstruction, and our contribu-
tions are three-fold:
1. We propose a novel framework that simultaneously re-

covers high-fidelity object shapes and textures from
single-view images. Our framework leverages the
strengths of neural implicit surfaces in shape learning
and radiance fields in texture modeling, and seamlessly
introduces rendering capabilities into a single-view 3D
reconstruction model.

2. To effectively employ supervision from both 3D shapes
and volume rendering, we conduct a thorough analysis
and propose a carefully designed two-stage learning cur-
riculum that improves 2D-3D supervision coordination
and addresses shape-appearance ambiguity.

3. Extensive experiments and ablations demonstrate that
our proposed method significantly enhances the details
of textured 3D object reconstruction, outperforming all
state-of-the-art methods. We demonstrate its ability to
render color, depth, and normal images from novel view-
points and its potential to facilitate applications such as
holistic scene understanding and 3D scene editing.

2. Related work
3D reconstruction from a single Image Reconstruct-

ing 3D shapes from single images remains a challenging
task in indoor scene understanding, and it has spurred the
development of relevant datasets [13, 19, 68, 69] and mod-
els [14, 24, 27, 40]. Early approaches utilized 3D bound-
ing boxes [9, 16, 26, 29, 31] or retrieved CAD models [30,
33, 52] to represent objects, but they lacked instance-
specific 3D object geometries. Recent methods explored ex-
plicit [21, 54] or implicit [41, 87] representations to address
these limitations. However, they overlooked object textures,
a crucial aspect for semantic-demanding tasks that require
pixel-level details. This is often addressed through genera-
tive approaches given the 3D shapes [5, 67]. In this paper,
we propose a novel approach that simultaneously recovers
detailed 3D geometry and object textures using neural im-
plicit shape and radiance field representation.

Generative methods have also been proposed for single-
view 3D reconstruction, utilizing priors learned from large-
scale datasets. 2D prior-guided models [43, 49, 66, 71] gen-
erate images from novel views and reconstruct objects un-
der a multi-view setting, while the 3D counterpart employs
millions of 3D-text pairs to train a conditional generative
model [34]. In comparison, our approach leverages benefits



from both 3D and 2D supervision in a discriminative way
and demonstrates superior capture of high-fidelity 3D struc-
tures and details by explicitly modeling the object shapes
and textures together.

Neural implicit surfaces representation Implicit rep-
resentations model 3D geometry with neural networks in a
parametrized manner [18, 42, 56, 59]. Unlike explicit repre-
sentations (such as point cloud [1, 63], mesh [21, 61], vox-
els [35, 77]), implicit representations are continuous, high
spatial resolution, and have constant memory usage. How-
ever, most existing work [10, 50, 54, 57, 59] conditions neu-
ral implicit representation on global image features, which
improves memory efficiency but compromises on preserv-
ing details, leading to retrieval-like results. Even when in-
stance and pixel-aligned features are utilized for implicit
representation learning from a single view [41, 65, 79], the
model may fail to capture higher-order relationships be-
tween 3D points and lack incentives to capture geometric
details reflecting pixel-level image details. In this paper, we
address this limitation by employing neural implicit shape
and radiance field representation, which benefits from both
3D shape supervision and volume rendering, allowing the
model to learn geometric and appearance details jointly.

Surface representation learning Recent advances in
implicit volume rendering (e.g., neural radiance fields
(NeRF) [36, 48, 72]) have spurred new efforts in surface
representation learning. However, extracting high-fidelity
surfaces from learned radiance fields is challenging due to
insufficient constraints on the level sets in density-based
scene representation. To overcome this limitation, recent
methods have combined the benefits of implicit surface
and volume rendering-based methods by converting the
SDF to density and applying volume rendering to train this
representation with robustness [58, 76, 82]. Nevertheless,
rendering-based approaches often yield unsatisfactory re-
sults in 3D geometry recovery, especially when provided
with sparse input views, such as in cluttered indoor scenes.
Such failure is rooted in the shape-appearance ambiguity
with photo-realistic losses, where an infinite number of
photo-consistent explanations exist for the same input im-
age. In this work, we propose an approach that leverages
both 3D shape and volume rendering supervision for single-
view reconstruction. Moreover, we make the first attempt to
investigate how to coordinate these two sources of supervi-
sion effectively. To this end, we introduce a two-stage learn-
ing curriculum with an incremental increase for the render-
ing loss weights to achieve improved coordination between
the 3D and 2D supervisions and better capture geometric
details for textured 3D object reconstruction.

3. Method
Given a single image of an indoor scene, our objective is
to simultaneously reconstruct the 3D geometry and appear-

ance of all objects present. We build upon existing meth-
ods [41, 54, 87] for 3D object detection and camera pose
estimation, focusing on the reconstruction of fine-grained
textured meshes.

3.1. Background

Neural implicit surfaces with SDF We utilize neural
implicit surfaces with SDF to represent 3D geometry. The
SDF provides a continuous function that yields the distance
s to the closest surface for a given point x, with the sign
indicating whether the point lies inside (negative) or outside
(positive) the surface:

SDFpxq “ s : x P R3, s P R. (1)

The zero-level set of the SDF function Ω “ tx P R3 |

SDFpxq “ 0u implicitly represents the surface.
Volume rendering of implicit surfaces To enable op-

timization with differentiable volume rendering, we convert
the neural implicit surface representation SDF to density
σ [58, 76, 82]. The conversion is performed using a learn-
able parameter β as follows:

σβpsq “

#

1
2β expp s

β q s ď 0
1
β p1 ´ expp´ s

β qq s ě 0
. (2)

Following the concept of NeRF [51], we sample M
points on the ray r from the camera center o to the pixel
along the viewing direction d:

xir “ o ` tird, i “ 1, . . . ,M, (3)

where tir is the distance from the sample point to the camera
center. We predict the SDF value ŝ and color value ĉir for
each sample point on the ray.

The predicted color Ĉprq for the ray r can be computed
using transmittance T i

r and alpha values αi
r:

Ĉprq “

M
ÿ

i“1

T i
rα

i
rĉir, (4)

where T i
r “

śi´1
j“1p1 ´ αj

r q. The alpha value is calculated
as αi

r “ 1 ´ expp´σi
rδ

i
rq, and δir represents the distance be-

tween neighboring sample points along the ray. Addition-
ally, we can compute the depth D̂prq and normal N̂prq of
the surface intersecting the current ray r as:

D̂prq “

M
ÿ

i“1

T i
rα

i
rt

i
r, N̂prq “

M
ÿ

i“1

T i
rα

i
rni

r. (5)

3.2. 3D object reconstruction

Given the input image I of the scene, we aim to recover
the 3D shape of the object O, identified by its 2D bounding
box, 3D bounding box, and category class.
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Figure 2. Framework overview. Our framework jointly recovers 3D object shapes and textures from single-view images. Given a query
point x along a camera ray with direction d, we extract pixel-aligned and instance-aligned features using an image encoder Enc. The
implicit network fθ predicts the geometry feature ẑ and SDF value ŝ, which is then transformed to volume density σ. The rendering
network gθ takes the normal n̂ and viewing direction d to predict the color value ĉ. Our learning curriculum consists of two stages: Stage
One, which only employs explicit SDF supervision, and Stage Two, where volume rendering supervision is incrementally added.

Feature extraction We extract image features F “
EncpIq using a CNN-based encoder Enc and utilize both
instance-aligned feature Fins and pixel-aligned feature Fpix

for recovering detailed shapes and textures. FinspOq is ob-
tained by cropping out the region-of-interest (ROI) features
from F based on the 2D bounding box of object O follow-
ing He et al. [25] and Liu et al. [41]. To obtain the pixel-
aligned feature Fpixpxq for a 3D point x, we project x onto
the image plane to obtain the corresponding image coor-
dinates πpxq using the camera intrinsics. The pixel-aligned
feature is then obtained through linear interpolation on the
feature map, i.e., Fpixpxq “ InterppF pπpxqqq.

Implicit and rendering networks We parameterize
the SDF function with an implicit network fθ, which is
a single MLP [59, 83] taking the instance-aligned feature,
pixel-aligned feature, and the position x as input to predict
the SDF value ŝ:

ŝ “ fθpγpxq, FinspOq, Fpixpxqq. (6)

Here, γp¨q represents a positional encoding with 6 exponen-
tially increasing frequencies. The rendering network gφ pre-
dicts RGB color values ĉ for each 3D point using the 3D
point x, normal n̂, viewing direction d, and a global geom-
etry feature ẑ as input, following Yariv et al. [81]:

ĉ “ gφpx, d, n̂, ẑq. (7)

The 3D normal n̂ is calculated as the analytical gradient of
the SDF function, i.e., n̂ “ ∇fθp¨q. The feature vector ẑ is
the output of a second linear head of the implicit network,
as in Yariv et al. [81] and Yu et al. [84].

3.3. Supervision and learning curriculum

We employ neural implicit shape and radiance field repre-
sentation to effectively learn the 3D shape prior and to cap-
ture pixel-level details, benefiting from both explicit 3D and
volume rendering supervision.

3D supervision We apply direct 3D supervision by us-
ing the following loss between the predicted and real SDF
values:

L3D “
ÿ

xPtX
Ť

ru
||spxq ´ ŝpxq||1. (8)

This loss is computed for points along the rays r and from
the point set X , which contains uniformly sampled points
and near-surface points.

Photometric reconstruction loss For all rays r in the
minibatch, we render each pixel with the predicted SDF val-
ues ŝ and color values ĉ for all sampled points on the ray;
the volume rendering formulations are detailed in Sec. 3.1.
The photometric reconstruction loss is defined as:

Lrgb “
ÿ

r
||Cprq ´ Ĉprq||1, (9)

where Cprq denotes the color value in the input image.
Exploiting monocular geometric cues To further al-

leviate ambiguities in recovering 3D shapes from single-
view inputs, we follow Yu et al. [84] and exploit monocular
depth and normal cues to facilitate the training process. The
depth and normal consistency losses are defined as follows:

Ld “
ÿ

r
||Dprq ´ D̂prq||2

Ln “
ÿ

r
||Nprq ´ N̂prq||1 ` ||1 ´ NprqJN̂prq||1

(10)



Compared to the photometric reconstruction loss, the depth
and normal consistency losses can directly supervise the
SDF prediction in the implicit network fθ through back-
propagation without the rendering network gϕ; please refer
to Fig. 2 for detailed illustration.

Overall loss The overall loss used to optimize the im-
plicit and rendering networks jointly is given by:

L “ α3DL3D ` αrgbLrgb ` αdLd ` αnLn, (11)

where α denotes the respective loss weight. Lrgb, Ld, and
Ln are applied to the visible pixels for the object O, in-
dicated by its visible mask segmentation. Note that depth,
normal, and segmentation are only used during the training
stage, and none are required during the inference stage, pre-
serving the flexibility and applicability of our model.

Learning curriculum To address the limitations of
naively incorporating 3D and rendering supervision in the
single-view setting, which may result in realistic images
but inconsistent 3D geometry due to shape-appearance am-
biguity, we introduce a learning curriculum based on two
empirical observations: 1) the rendering supervision should
serve as an auxiliary to 3D supervision, and 2) it is more ef-
fective to first learn the overall object shape before delving
into finer details. Following these, our learning curriculum
comprises two stages: Stage One, which only employs 3D
supervision L3D, and Stage Two, which incorporates Lrgb,
Ld, and Ln with linearly increasing loss weights:

α “ ηpλ ´ λ0q, λ ą λ0. (12)

λ denotes the epoch number, λ0 is the starting epoch of
Stage Two, and η is the linear coefficient. λ0 is empirically
selected by observing the shape learning curves and our cur-
riculum is crucial for performance improvement (Sec. 4.1).

3.4. 3D scene composition

A scene can be represented by the composition of objects
tOi, i “ 1, ¨ ¨ ¨ , ku within it. We obtain both the 3D re-
constructed geometry and the photometric rendering of the
scene by composing the implicit representations of the in-
dividual objects given their 2D and 3D bounding boxes.

3D scene geometry To compose the 3D geometry of
the scene, we transform each object’s implicit surfaces into
explicit meshes using the Marching Cubes algorithm [45].
The object meshes are then combined using the camera’s
extrinsic parameters and 3D object bounding boxes.

3D scene rendering To render an image of the scene,
we sample points along the rays and estimate their density
and color values for each individual object. Sampled points
on the same ray from different objects are then grouped
together to composite the colors and densities for volume
rendering. This distance-aware integration ensures that only
visible objects appear in the final images, as the accumu-
lated transmittance along the ray reflects visibility.

The object composition operation offers flexibility for
both reconstruction and rendering, making it applicable for
holistic scene understanding and novel view synthesis with
3D scene editing, such as object rotation, translation, and
compositions from different scenes.

4. Experiment

We evaluate single-view object reconstruction in indoor
scenes using synthetic dataset 3D-FRONT [19] and real
dataset Pix3D [69]. Our model’s capabilities are tested in
novel view synthesis, depth estimation, and normal estima-
tion tasks, leveraging its rendering capabilities. Addition-
ally, we showcase potential applications of our model, in-
cluding holistic scene understanding and 3D scene editing.

4.1. Indoor object reconstruction

Datasets We evaluate our single-view object recon-
struction on synthetic dataset 3D-FRONT [19] and real
dataset Pix3D [69]. We adopt the same splits as Liu et
al. [41] for both datasets. Data preparation details, including
monocular cues and SDF generation, are in Sup. Mat..

Evaluation metrics To evaluate 3D object recon-
struction, we use Chamfer Distance (CD), F-Score, and
Normal Consistency (NC) following Wang et al. [75] and
Mescheder et al. [50]. CD measures the sum of squared
distances between the nearest neighbor correspondences of
two point clouds after mesh alignment. F-Score [38] is the
harmonic mean of precision and recall of points in the pre-
diction and ground truth within the nearest neighbor. NC
quantifies how well methods capture higher-order informa-
tion by computing the mean absolute dot product of the nor-
mals between meshes after alignment.

Results In the single-view object reconstruction task,
we compare our method with MGN of Total3D [54], the
LIEN of Im3D [87], and InstPIFu [41]. Our model sur-
passes state-of-the-art methods across all three metrics in
both synthetic (Tab. 1) and real (Tab. 2) datasets. Notably,
on 3D-FRONT, our model achieves 27.7% and 16.4% per-
formance gain in mean CD and F-Score, respectively, as
well as the best NC on all object categories. This high-
lights our model’s proficiency in predicting highly detailed
object shapes and smoother surfaces (Fig. 3). Moreover,
our model predicts high-fidelity textures, a capability lack-
ing in previous models. It represents significant progress in
single-view 3D object reconstruction, enabling the recovery
of both fine-grained shapes and intricate textures. Further
details, results, and failure cases are in Sup. Mat..

Ablations To analyze the effects of various supervi-
sions and learning curricula, we conduct ablative studies on
SDF, color (C), depth (D), and normal (N ) supervisions,
along with different loss weights and curriculum strategies
(Curr.). Key findings from Tab. 3 and Fig. 4 are as follows:
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Figure 3. Qualitative results of indoor object reconstruction. Examples from 3D-FRONT [19] (top three rows) and Pix3D [69] (bottom
two rows) datasets. Our model produces textured 3D objects with smoother surfaces and finer details than previous methods.

1. Incorporating color, depth, and normal supervision in
our framework significantly enhances 3D object recon-
struction, especially in capturing finer details.

2. 2D supervision should act as an auxiliary to 3D supervi-
sion, as simply increasing 2D loss weights (e.g., �ˆ5 or
�ˆ10) negatively impacts 3D reconstruction. Fig. 4(c)
shows clear artifacts along the ray directions, indicating
the importance of a suitable learning curriculum.

3. Our proposed curriculum, gradually increasing 2D loss
weights after the 3D shape prior learning phase (Stage
Two starting epoch λ0 “ 150), outperforms early injec-
tion of 2D supervision (λ0 “ 0 or λ0 “ 70).

Table 1. Object reconstruction on the 3D-FRONT [19] dataset.
Our model achieves the best performance on mean CD and
F-Score, as well as the best NC on all object categories, outper-
forming MGN [54], LIEN [87], and InstPIFu [41]. :: Results re-
produced from the official repository.

Category bed chair sofa table desk nightstand cabinet bookshelf mean

CD Ó

MGN 15.48 11.67 8.72 20.90 17.59 17.11 13.13 10.21 14.07
LIEN 16.81 41.40 9.51 35.65 26.63 16.78 7.44 11.70 28.52

InstPIFu 18.17 14.06 7.66 23.25 33.33 11.73 6.04 8.03 14.46
Ours 4.96 10.52 4.53 16.12 25.86 17.90 6.79 3.89 10.45

F-Score Ò

MGN 46.81 57.49 64.61 49.80 46.82 47.91 54.18 54.55 55.64
LIEN 44.28 31.61 61.40 43.22 37.04 50.76 69.21 55.33 45.63

InstPIFu 47.85 59.08 67.60 56.43 48.49 57.14 73.32 66.13 61.32
Ours 76.34 69.17 80.06 67.29 47.12 58.48 70.45 85.93 71.36

NC Ò

MGN: 0.829 0.758 0.819 0.785 0.711 0.833 0.802 0.719 0.787
LIEN: 0.822 0.793 0.803 0.755 0.701 0.814 0.801 0.747 0.786

InstPIFu: 0.799 0.782 0.846 0.804 0.708 0.844 0.841 0.790 0.810
Ours 0.896 0.833 0.894 0.838 0.764 0.897 0.856 0.862 0.854

Comparison with prior-guided models We compare
our model with generative models demonstrating potential
zero-shot generalizability by leveraging 2D or 3D geomet-
ric priors learned from large-scale datasets. Specifically,
we choose two representative works: (1) Zero-1-to-3 [43],
which uses Objaverse [15] to learn a 2D diffusion prior
for novel view synthesis under specified camera transfor-
mation and reconstructs objects under a multi-view setting;
(2) Shap¨E [34], which directly generates textured meshes
given images and category prompts, trained on millions of
paired 3D and text data. For a fair evaluation, we com-
pare them with our model on a subset of the test split in
3D-FRONT with ground truth object scale. Results in Fig. 5
and Tab. 4 show that while Zero-1-to-3 produces reasonable

Table 2. Object Reconstruction on the Pix3D [69] dataset. On
the non-overlapped split [41], our model outperforms the state-of-
the-art methods by significant margins. :: Results reproduced from
the official repository.

Category bed bookcase chair desk sofa table tool wardrobe misc mean

CD Ó

MGN 22.91 33.61 56.47 33.95 9.27 81.19 94.70 10.43 137.50 44.32
LIEN 11.18 29.61 40.01 65.36 10.54 146.13 29.63 4.88 144.06 51.31

InstPIFu 10.90 7.55 32.44 22.09 8.13 45.82 10.29 1.29 47.31 24.65
Ours 6.31 7.21 26.23 28.63 5.68 43.87 8.29 2.07 35.03 21.79

F-Score Ò

MGN 34.69 28.42 35.67 65.36 51.15 17.05 57.16 52.04 10.41 36.20
LIEN 37.13 15.51 25.70 26.01 49.71 21.16 5.85 59.46 11.04 31.45

InstPIFu 54.99 62.26 35.30 47.30 56.54 37.51 64.24 94.62 27.03 45.62
Ours 68.78 66.69 55.18 42.49 71.22 51.93 65.38 91.84 46.92 59.71

NC Ò

MGN: 0.737 0.592 0.525 0.633 0.756 0.794 0.531 0.809 0.563 0.659
LIEN: 0.706 0.514 0.591 0.581 0.775 0.619 0.506 0.844 0.481 0.646

InstPIFu: 0.782 0.646 0.547 0.758 0.753 0.796 0.639 0.951 0.580 0.683
Ours 0.825 0.689 0.693 0.776 0.866 0.835 0.645 0.960 0.599 0.778



Table 3. Ablation studies on object reconstruction. We demon-
strate the benefits of introducing 2D supervision and employing a
properly designed curriculum. The notation ˆ5{10 indicates in-
creased loss weights.

SDF C D N Curr. CD Ó F-Score Ò NC Ò

� ˆ ˆ ˆ ˆ 16.43 64.15 0.806
� � ˆ ˆ ˆ 15.90 65.55 0.813
� � � ˆ ˆ 14.02 67.31 0.828
� � � � ˆ 12.92 67.71 0.841
� �ˆ5 �ˆ5 �ˆ5 ˆ 16.19 64.92 0.813
� �ˆ10 �ˆ10 �ˆ10 ˆ 19.22 58.26 0.771
� � � � λ0 “ 0 12.88 68.19 0.840
� � � � λ0 “ 70 12.42 68.87 0.845
� � � � λ0 “ 150 10.45 71.36 0.854

Input (a) (b) (c) (d) (e)

Figure 4. Visual comparisons for ablation study. (a) SDF only
(b) SDF`C`D`N (c) SDF`C`D`N with ˆ10 loss weights
�ˆ10 (d) λ0 “ 0 (e) λ0 “ 150. Incorporating 2D supervision with
our designed curriculum yields the best reconstruction quality.
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Figure 5. Comparison with prior-guided models. Inputs for
Zero-1-to-3 [43] and Shap¨E [34] only contains foreground ob-
jects. Each example is presented with textured mesh and mesh
from three views. Our method outperforms prior-guided models
in capturing details and 3D shape consistency.

images on particular views, it faces difficulties achieving
overall 3D shape consistency. Shap¨E captures the rough
object shape but lacks detailed modeling of geometry and
texture. On the contrary, our model excels at recovering the
general 3D shapes while maintaining fine geometrical and

Table 4. Quantitative comparison with prior-guided models.
Despite the zero-shot generalization ability, methods leveraging
2D or 3D priors fall short in recovering object geometry, espe-
cially surface details, compared to our proposed method.

CD Ó F-Score Ò NC Ò

Zero-1-to-3 [43] 39.27 30.07 0.624
Shap¨E [34] 29.16 39.86 0.686
Ours 10.86 69.95 0.846

Input&Rec. -40° -20° 0° 20° 40°

Figure 6. Novel view rendering from single-view inputs. Our
model can render color, depth, and normal images for both objects
(top) and scenes (bottom) from novel views.

textural details. This stresses the significant potential of ef-
fectively integrating 2D and 3D priors for future single-view
reconstruction models to achieve enhanced results and gen-
eralizability. More details can be found in Sup. Mat..

4.2. Rendering capability

Harnessing the advantages of our method, we seamlessly
introduce rendering capabilities to a single-view reconstruc-
tion model. From the single-view input image, we can ren-
der the color, depth, and normal images through volume
rendering, even from novel views. The qualitative exam-
ples presented in Fig. 6 illustrate that our method excels in
producing plausible and consistent rendering results, even
when the viewing angles change significantly (i.e., ˘40°).

Novel view synthesis PixelNeRF [83] employs a
NeRF representation for novel view synthesis from input
images. We compare the class-agnostic model of Pixel-
NeRF, which is pre-trained on ShapeNet [7] and fine-tuned
on 3D-FRONT. Qualitative results in Fig. 7 reveal a notable
difference between the two approaches: PixelNeRF strug-
gles to render images outside the vicinity of the original
viewpoints, whereas our method is capable of generating
meaningful renderings from novel viewpoints. This shows
the importance of effectively imposing an explicit 3D shape
prior to the view synthesis model, particularly when dealing
with partial observation in real scenes.



!
"#
$%%
%%%
%%%
%%%
%%%
%%&
'(
)*
+
),
-

Input -30° -20° -10° 0° 10° 20° 30°

Figure 7. Visual comparison for novel view rendering. Pixel-
NeRF [83] struggles to render images outside the vicinity of the
input view, whereas our method can produce realistic renderings
even for views far from the original input.

Table 5. Single-view depth and normal estimation. We evaluate
depth using L1 Ó and normal using L1Ó / Angular˝Ó error as met-
rics. For novel views, we use ˘15° views to evaluate the accuracy.

Original View Novel View

Depth Normal Depth Normal

XTC [86] 1.188 12.712 / 14.309 - -
Omnidata [17] 0.734 10.015 / 11.257 - -
Ours 0.992 10.962 / 12.392 1.179 12.094 / 13.710

Input InstPIFU Oursshape Oursshape+texture

Figure 8. Holistic scene understanding and generalization. Re-
construction on SUNRGB-D with 3D object detection demon-
strates our model’s generalizability in recovering realistic scenes.

Depth and normal estimation Moreover, our model
can serve as a proficient single-view depth and normal
estimator. To validate this, we compare with zero-shot
state-of-the-art methods [17, 86] on 3D-FRONT, follow-
ing Ranftl et al. [64]. Results in Tab. 5 demonstrate that
our model performs comparably on the input views. It also
shows our model can directly estimate reasonable depth and
normal maps on novel views. This is challenging since our
model solely relies on single-view inputs, which is in stark
contrast from previous work [23, 74, 84] that require multi-
view inputs; see Sup. Mat. for additional results.

4.3. Applications

Generalizable holistic scene understanding Our
method is capable of recovering 3D scene geometry and
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Figure 9. 3D scene editing based on single-view inputs. Recon-
structions and renderings are shown for (a) duplicating the chairs,
(b) rotating the sofa and (c) scene composition of (a) and (b).

rendering corresponding color, depth, and normal images
by composing object-level implicit representations (see
Sec. 3.4 for more details). Fig. 8 showcases qualitative
scene reconstruction results on SUNRGB-D [68] by em-
ploying existing 3D object detectors [6, 87]. The results
demonstrate that our method can reconstruct detailed ob-
ject shapes and intricate textures in real images with cross-
domain generalization ability.

Scene editing Finally, we demonstrate our model’s po-
tential in representing scenes and enabling 3D scene editing
applications. Our method allows for object-level editing,
such as object translation, rotation, duplication, and com-
position of objects from different scenes into a shared 3D
space. Qualitative results are shown in Fig. 9. Notably, our
approach can generate both 3D geometry and rendered im-
ages for edited scenes, which differentiates itself from pre-
vious work that could only render images of manipulated
objects [55, 78, 80], perform color or texture editing [39],
or require multi-view posed images as input [42, 85].

5. Conclusion

We propose a novel framework for single-view scene recon-
struction, which exhibits a significant advantage in textured
3D object reconstruction compared to state-of-the-art meth-
ods. Integrating color, depth, and normal supervision with
our designed curriculum is pivotal to achieving improved
performance. Furthermore, our model demonstrates impres-
sive rendering capabilities and performs well in single-view
depth and normal estimation, showing promise for general-
ization in holistic scene understanding and facilitating ap-
plications like 3D scene editing. Potential limitations in-
clude the model’s ability to reconstruct objects from novel
categories and texture recovery for unseen object parts. Ef-
fectively incorporating 2D or 3D priors from large-scale
datasets offers a promising avenue for future direction.
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