

Diffusion-based Generation, Optimization, and Planning in 3D Scenes

Siyuan Huang¹*™, Zan Wang¹,²*, Puhao Li¹,³, Baoxiong Jia¹, Tengyu Liu¹, Yixin Zhu⁴, Wei Liang²,⁵™, Song-Chun Zhu¹,³,⁴

¹National Key Laboratory of General Artificial Intelligence, BIGAI ²School of Computer Science & Technology, Beijing Institute of Technology ³Dept. of Automation, Tsinghua University ⁴Institute for AI, Peking University ⁵Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing

Project Page https://scenediffuser.github.io/

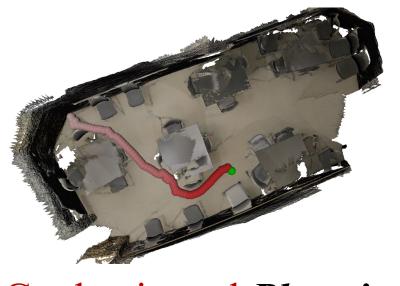
SceneDiffuser

human pose generation
human motion generation
dexterous grasp generation
path planing for 3D navigation
with goals
motion planning for robot

SceneDiffuser is a conditional generative model for 3D scene understanding.

It is applicable to various scene-conditioned 3D tasks.

Long-standing Goals for 3D Scene Understanding



Scene-aware Generation Physics-based Optimization Goal-oriented Planning

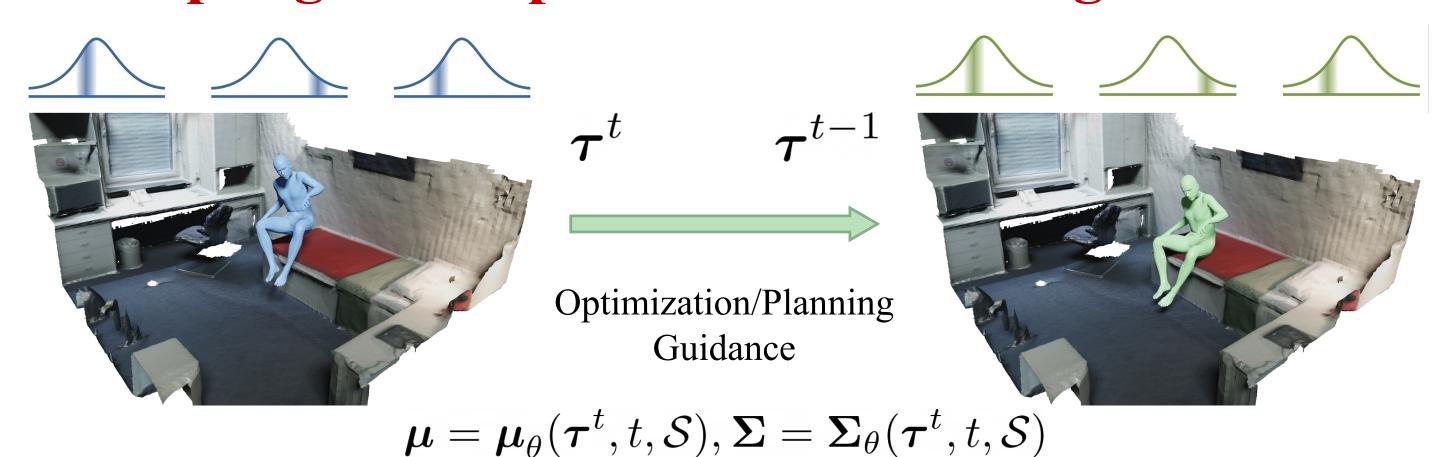
Two Fundamental Limitations

➤ Lack of *powerful* generative model ➤ Lack of *unified* framework

Contribution

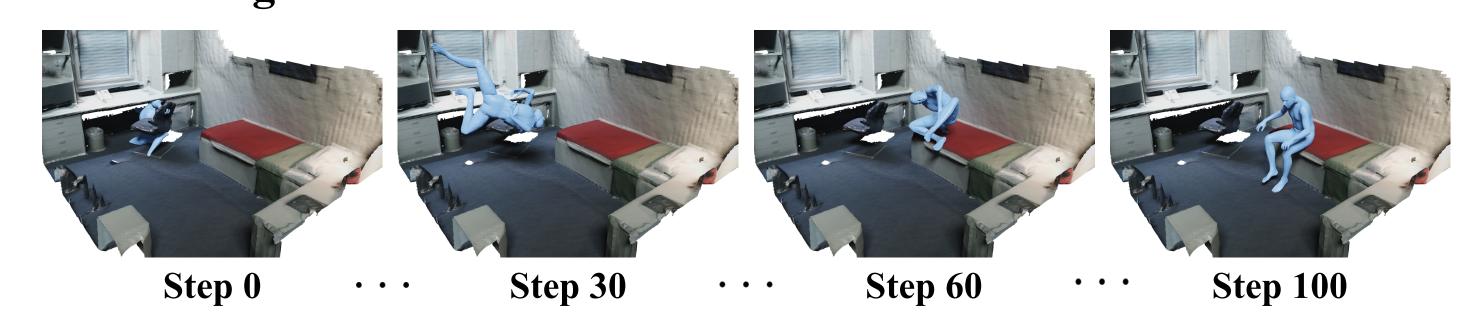
- ✓ We propose the **SceneDiffuser** as a general conditional generative model for *generation*, *optimization*, and *planning* in 3D scenes.
- ✓ **SceneDiffuser** is intrinsically *scene-aware*, *physics-based*, and *goal-oriented*, applicable to various scene-conditioned 3D tasks.
- ✓ We demonstrate that the **SceneDiffuser** outperforms previous models by a *large margin* on **five** scene understanding tasks, establishing its **efficacy** and **flexibility**.

Sampling with Optimization/Planning Guidance

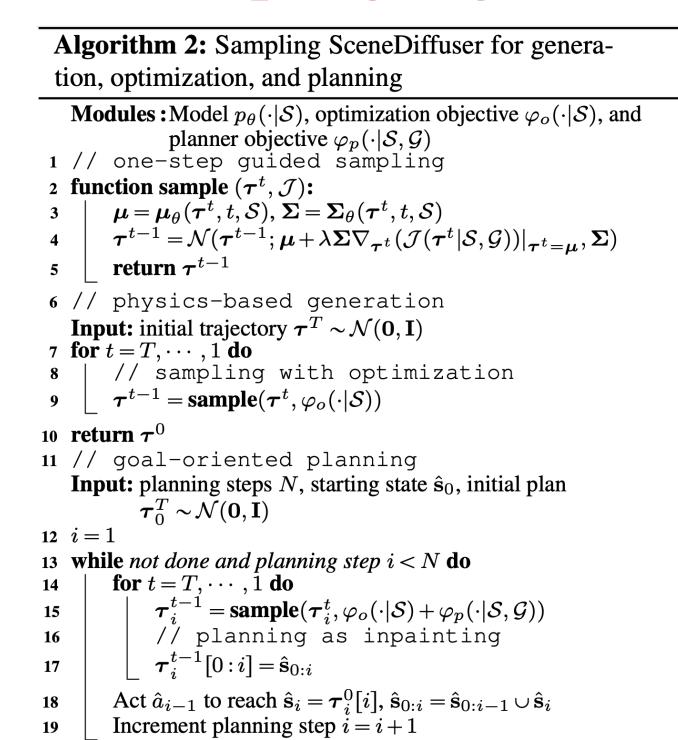


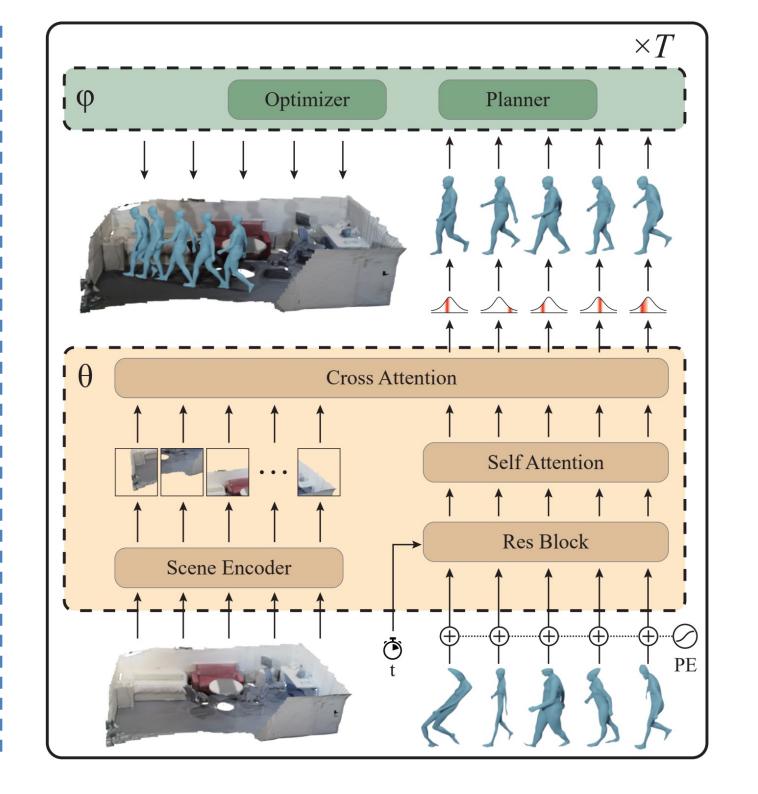
 $oldsymbol{ au}^{t-1} = \mathcal{N}(oldsymbol{ au}^{t-1}; oldsymbol{\mu} + \lambda oldsymbol{\Sigma}
abla_{oldsymbol{ au}^t} (\mathcal{J}(oldsymbol{ au}^t | \mathcal{S}, \mathcal{G}))|_{oldsymbol{ au}^t = oldsymbol{\mu}}, oldsymbol{\Sigma})$

Denoising Process with Guidance



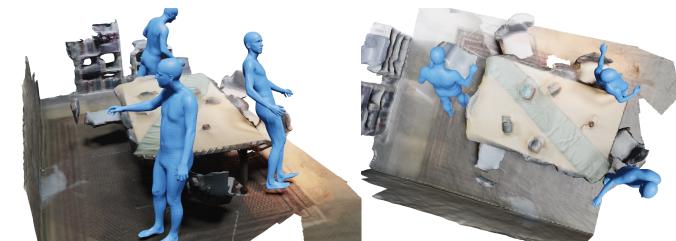
Sampling Algorithm and Model Architecture





Tasks and Results

Task 1: Human Pose Generation



SceneDiffuser with Guidance

Task 2: Human Motion Generation

SceneDiffuser generates diverse motions (e.g., "sit," "walk") from the same start position in unseen 3D scenes.

Task 3: Dexterous Grasp Generation

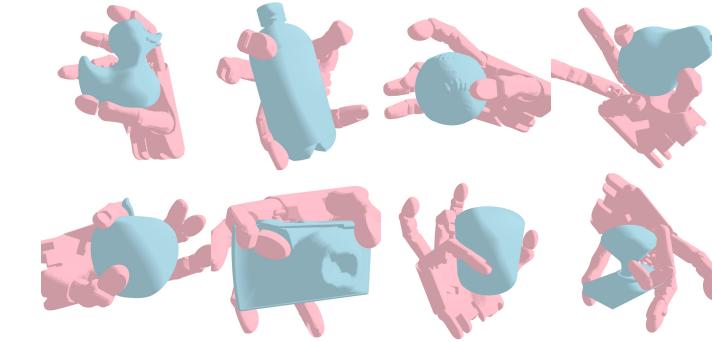


Table 3. Quantitative results of dexterous grasp generation on MultiDex [31] dataset. We measure the success rates under different diversities and depth collisions. TTA. denotes test-time optimization with physics and contact.

		succ. rate $(\%)\uparrow$			J4b11 ()
	model	σ	2σ	all	depth coll. (mm)
	cVAE [25] cVAE (w/ TTA.) [25]	0.00	10.09 21.91	14.06 17.97	22.98 15.19
	ours (w/o opt.) ours (w/ opt.)	70.65 71.27	71.25 69.84	71.25 69.84	17.34 14.61
-				·	_

Task 4: Path Planning for Navigation

Task 5: Motion Planning for Robot Arms

Table 4. Quantitative results of path planning in 3D navigation and motion planning for robot arms.

task	model	succ. rate(%)↑	planning steps↓
	BC	0	150
path plan	$deterministic(L_2)$	13.50	137.98
	ours	73.75	90.38
	BC	0.31	299.08
arm motion	$deterministic(L_2)$	72.87	141.28
	ours	78.59	147.60

Please refer to our paper for more quantitative and qualitative results.