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Swela | resting
Azibo | moving

Corrie | resting

Azibo | being carried

Swela | carrying, moving

Azibo | being carried
Swela | carrying, moving

Azibo | moving

Figure 1: Sample frames and annotations from a ChimpACT clip. While we also annotate visibility for both
the bounding box and the keypoint, these are omitted here for clarity.

Abstract
Understanding the behavior of non-human primates is crucial for improving animal
welfare, modeling social behavior, and gaining insights into distinctively human
and phylogenetically shared behaviors. However, the lack of datasets on non-human
primate behavior hinders in-depth exploration of primate social interactions, posing
challenges to research on our closest living relatives. To address these limitations,
we present ChimpACT, a comprehensive dataset for quantifying the longitudinal
behavior and social relations of chimpanzees within a social group. Spanning from
2015 to 2018, ChimpACT features videos of a group of over 20 chimpanzees
residing at the Leipzig Zoo, Germany, with a particular focus on documenting
the developmental trajectory of one young male, Azibo. ChimpACT is both com-
prehensive and challenging, consisting of 163 videos with a cumulative 160,500
frames, each richly annotated with detection, identification, pose estimation, and
fine-grained spatiotemporal behavior labels. We benchmark representative methods
of three tracks on ChimpACT: (i) tracking and identification, (ii) pose estimation,
and (iii) spatiotemporal action detection of the chimpanzees. Our experiments
reveal that ChimpACT offers ample opportunities for both devising new methods
and adapting existing ones to solve fundamental computer vision tasks applied
to chimpanzee groups, such as detection, pose estimation, and behavior analy-
sis, ultimately deepening our comprehension of communication and sociality in
non-human primates.
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1 Introduction

Studying the behavior of non-human primates is essential for gaining evolutionary insights (Langer-
graber et al., 2012), conducting biomedical research (Schapiro et al., 2005), and improving animal
welfare (Dawkins, 2003; Gonyou, 1994). Furthermore, given the close phylogenetic proximity be-
tween humans and non-human primates, it provides an ethically sound and effective avenue to probe
the roots of human sociality (The Chimpanzee Sequencing and Analysis Consortium, 2005). Tradi-
tional field research typically requires researchers to enter wildlife conservation areas for extended
durations, sometimes spanning multiple years. This involves habituating primate groups to human
presence, capturing video footage, and laboriously manually coding these videos for subsequent
statistical analysis (Hobaiter et al., 2017; Fröhlich et al., 2020; Surbeck et al., 2017; Luncz et al.,
2018; Sirianni et al., 2015). While video coding is heralded as the gold standard for distilling rich,
nuanced behavioral patterns (Wiltshire et al., 2023), its practical utility hinges on the efficiency of the
coding process. This not only demands researchers with specialized expertise but is also prone to
attentional biases.

Recent strides in computer vision offer promise for the automated analyses of non-human primate
behaviors, especially those of chimpanzees. Nevertheless, the scarcity of high-quality longitudinal
datasets remains a bottleneck. Assembling chimpanzee behavioral data is a formidable endeavor,
necessitating substantial resources and expertise. This process entails continuous video recording and
meticulous manual annotation, with a keen emphasis on annotation accuracy and consistency. While
some datasets (Marks et al., 2022; Bala et al., 2020) confine subjects to indoor enclosures, resulting
in atypical and constrained environments, others resort to sourcing and labeling chimpanzee images
online (Labuguen et al., 2021; Desai et al., 2022; Ng et al., 2022; Yao et al., 2023). Unfortunately,
these often overlook the intricate social dynamics inherent to chimpanzee groups, hindering a
comprehensive study of their social behaviors and social relationships.

Addressing the existing limitations, we introduce ChimpACT, a comprehensive longitudinal dataset
tailored for the in-depth study of chimpanzee social behavior in a semi-naturalistic setting, replete
with annotations of instance bounding boxes, body poses, and spatial-temporal action labels. A
comparison with other datasets is provided in Tab. 1. ChimpACT encompasses footage of a specific
chimpanzee group residing at Leipzig Zoo, Germany, with a particular focus on a juvenile male
named Azibo (refer to Fig. 1). The data, gathered between 2015 and 2018, employs focal sampling
(Altmann, 1974). Born in April 2015, Azibo1 has been living in the group since birth, providing a
unique perspective on the development of an individual within a chimpanzee group characterized by

Table 1: Comparison of ChimpACT with existing primate behavioral datasets. Square-bracketed numbers
denote label counts for the chimpanzee category. m denotes undocumented. For the “Species” row, G represents
general, P for primates, M for macaque, and C for chimpanzee. In the “Source” row, I stands for Internet, Z for
zoo, C for cage, W for wild, and CP for captive.

Dataset Species
Track 1 Track 2 Track 3

Sourcedetection, tracking, ReID pose estimation action recognition

ID # frame # box # track frame # pose # track dim. class # label #

AP-10K 13,028
(Yu et al., 2021) G ✗ ✗ ✗ ✗ 10,015 [<500] ✗ 2D ✗ ✗ I

AnimalKingdom 99,297 30,100
(Ng et al., 2022) G ✗ ✗ ✗ ✗ 33,099 [576] ✗ 2D 140 [m] I

OpenApePose 71,868
(Desai et al., 2022) P ✗ ✗ ✗ ✗ 71,868 [18,010] ✗ 2D ✗ ✗ I

OpenMonkeyChallenge 111,529
(Yao et al., 2023) P ✗ ✗ ✗ ✗ 111,529 [<10,000] ✗ 2D ✗ ✗ I & Z

OpenMonkeyStudio 33,192 C
(Bala et al., 2020) M ✗ ✗ ✗ ✗ 194,518 [0] ✓ 3D ✗ ✗ (6.7m2)

MacaquePose 16,393
(Labuguen et al., 2021) M ✗ ✗ ✗ ✗ 13,083 [0] ✗ 2D ✗ ✗ I & Z

SIPEC 2,200 C
(Marks et al., 2022) M 4 191 [0] ✓ ✗ ✗ ✗ ✗ 4 m (15m2)

CCR C 13 936,914 1,937,585 ✓ ✗ ✗ ✗ ✗ ✗ ✗ W(Bain et al., 2019)

ChimpACT C 23 160,500 56,324 ✓ 16,028 56,324 ✓ 2D 23 64,289 CP
(Ours) (4400m2)

1Details about Azibo can be found at https://tinyurl.com/azibo-chimp/.
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well-defined kin relationships. (also depicted in Fig. 2a). The footage covers the daily lives of over 20
chimpanzees in a group, aggregating to 163 video recordings, approximately 160,500 frames, and
spanning around 2 hours.

Our annotations on ChimpACT are extensive, marking each individual’s detection, tracking, identifi-
cation, pose estimation, and spatiotemporal action detection. Sample frames with their corresponding
annotations are illustrated in Fig. 1. Each chimpanzee’s identity is confirmed by a seasoned behav-
ioral researcher familiar with the Leipzig chimpanzees, ensuring data precision and trustworthiness.
Crucially, we employ an ethogram (detailed in Fig. 2b) devised by the same expert for fine-grained
action labels. To our knowledge, ChimpACT is the first to furnish ethogram annotations for the
machine learning and computer vision community. This bespoke ethogram delineates behaviors into
four categories: locomotion, object interaction, social interaction, and others, with each encompassing
several detailed actions we diligently annotate.

While advancements in computer vision have notably addressed human-centric tasks, such as human
pose estimation (Sun et al., 2019; Xiao et al., 2018), the dearth of chimpanzee datasets has curtailed
progress on chimpanzee-specific challenges. Despite their genetic closeness to humans (The Chim-
panzee Sequencing and Analysis Consortium, 2005), deciphering chimpanzee behaviors is intricate
due to their unique morphology, appearance, and keypoint articulation. Highlighting the importance
of crafting sophisticated chimpanzee perception models, we evaluate prominent human perception
methods on three tracks: (i) detection, tracking, and identification (ReID), (ii) pose estimation, and
(iii) spatiotemporal action detection. Our findings underscore ChimpACT’s potential as a platform
for the community to pioneer advanced techniques for better perception of the chimpanzees and
ultimately contribute to a deeper understanding of non-human primates.

2 Related work

Computer vision for animals A myriad of datasets and benchmarks have emerged, harnessing
computer vision techniques to advance animal research. For instance, 3D-ZeF20 (Pedersen et al.,
2020) introduces 3D tracking of zebrafish to the MOT benchmarks. AnimalTrack (Zhang et al., 2023)
emphasizes multi-animal tracking across a spectrum of species. AP-10K (Yu et al., 2021) and APT-
36K (Yang et al., 2022) venture into animal pose estimation for diverse species. AnimalKingdom (Ng
et al., 2022) extends its focus to fine-grained multi-label action recognition. Moreover, several studies
have delved into multi-agent behavior understanding from a social interaction perspective (Sun et al.,
2021, 2023). Distinctively, ChimpACT stands out as a holistic benchmark, encompassing three varied
downstream tasks and boasting rich annotations of social interactions.

Human video datasets In contrast to animal-centric video datasets, a more substantial collection is
tailored to human subjects, addressing diverse human-centric video understanding tasks. For instance,
the MOT Challenge (Milan et al., 2016) is curated for multi-person tracking. Other benchmarks like
COCO (Lin et al., 2014) and MPII (Andriluka et al., 2014) cater to human pose estimation. Meanwhile,
datasets such as Kinetics (Kay et al., 2017), ActivityNet (Fabian Caba Heilbron and Niebles, 2015),
and AVA (Gu et al., 2018) are dedicated to human action recognition. With ChimpACT, we encompass
analogous tasks but introduce challenges specific to chimpanzee behavior.

Datasets on primate behavioral understanding Most existing primate datasets are tailored
towards individual primate detection and pose estimation. These either stem from confined indoor
settings (Bala et al., 2020; Marks et al., 2022) or are amassed and labeled from online sources
(Labuguen et al., 2021; Desai et al., 2022; Ng et al., 2022; Yao et al., 2023). The former can induce
atypical behavioral patterns, while the latter often omits longitudinal interactions, rendering them
suboptimal for analyzing chimpanzee social dynamics. A notable exception is the CCR dataset (Bain
et al., 2019), chronicling 13 chimpanzees in the Bossou forest over two years. Yet, it primarily focuses
on individual detection and recognition, lacking behavioral annotations, which limits its efficacy for
probing the social nuances of wild primates. Tab. 1 offers a comprehensive comparison. The narrow
focus of most primate datasets on singular tasks restricts their breadth and adaptability to diverse
research inquiries. Contrarily, ChimpACT presents a multifaceted approach, encompassing identities,
kinship, detection labels, pose annotations, ethograms, and fine-grained action labels. This richness
positions it as an indispensable tool for devising advanced chimpanzee behavior analysis methods
and enriching the overarching comprehension of primate behavior.
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Figure 2: (a) Kinship of the observed chimpanzee group. Rectangles and ellipses represent males and females,
respectively, with arrows flowing from the parents to the child. Their vertical position relative to the time axis
indicates the year of birth. (b) Ethogram with annotated behaviors.

Methods for primate behavioral analysis Deciphering primate behavior is instrumental in un-
derstanding their social dynamics and cognitive abilities. Behavioral analysis often encompasses
subtasks like individual detection, tracking, and identification (Bain et al., 2019; Marks et al., 2022),
pose estimation (Labuguen et al., 2021; Desai et al., 2022; Mathis et al., 2018; Wiltshire et al.,
2023), and behavior recognition (Ng et al., 2022; Bain et al., 2021). While each task has specialized
techniques, many are rooted in human behavioral research. Numerous algorithms exist for human
tracking (Bewley et al., 2016; Pang et al., 2021), pose estimation (Sun et al., 2019; Xiao et al., 2018),
and behavior recognition (Feichtenhofer et al., 2019). However, due to the dearth of primate datasets,
primate behavioral analysis often repurposes algorithms designed for humans, including:

• Detection, tracking, and ReID identify individual primates in videos, often leveraging established
object or human detection algorithms like Mask-RCNN (He et al., 2017). For instance, SIPEC
(Marks et al., 2022) employs Mask-RCNN with a ResNet backbone (He et al., 2016) to track and
segment macaque. Bain et al. (2019) utilize CNNs to crop and identify individual chimpanzees.

• Pose estimation discerns primate poses, frequently adapting human pose estimation methods like
SimpleBaseline (Xiao et al., 2018). DeepLabCut (Mathis et al., 2018; Lauer et al., 2022), for
instance, employs ResNet-50 with ImageNet pre-trained weights for 2D animal pose estimation.
SIPEC (Marks et al., 2022) modifies SimpleBaseline for 2D macaque poses.

• Behavior recognition identifies primate actions and interactions. Contemporary methods (Bain
et al., 2021; Bohnslav et al., 2021) often derive from human action recognition algorithms like
SlowFast (Schindler and Steinhage, 2021). Notably, Bain et al. (2021) integrates audio cues for
classifying two simple non-interactive behaviors: nut cracking and buttress drumming. In contrast,
ChimpACT encompasses over 20 daily behaviors under an ethogram hierarchy, capturing both
solitary actions and intricate social interactions.

In essence, primate behavioral analysis is a multifaceted endeavor, intertwining computer vision,
machine learning, and primatology. The advent of ChimpACT marks a significant stride towards
unraveling the intricate social tapestry of our primate kin.

3 ChimpACT

3.1 Dataset description

ChimpACT comprises about 2-hour video footage of chimpanzees recorded at the Leipzig Zoo in
Germany between 2015 and 2018. The videos focus on one male chimpanzee, Azibo, who was born
in April 2015 to Swela and has lived with the A-chimpanzee group2 at the Leipzig Zoo ever since.
The longitudinal observation of Azibo offers a rare lens into his behavioral evolution, social dynamics,

2The A-chimpanzee group is among the most extensively studied zoo-residing chimpanzee cohorts. Its
members have been subjects of both behavioral and cognitive studies, spanning observational and experimental
designs, conducted by researchers affiliated with the MPI for Evolutionary Anthropology (Baker, 2022; McEwen
et al., 2022).
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and intra-group relationships. With over 20 individuals in the group, ChimpACT serves as a treasure
trove of insights into chimpanzee behavior and social intricacies. Key attributes of ChimpACT are
delineated below.

Longitudinal data Spanning four years, ChimpACT chronicles the life of a stable zoo-residing
chimpanzee group, offering a rare glimpse into the nuances of chimpanzee social behavior develop-
ment. Tracking the growth and interactions of a young chimpanzee within this group sheds light on
chimpanzee socialization, the evolution of social skills (Matsuzawa, 2013), the formation of social
bonds and integration into the dominance hierarchy (Matsuzawa et al., 2006), and the acquisition of
group-specific cultural behaviors (Van Leeuwen, 2021; Musgrave et al., 2021).

Semi-naturalistic and social environment The videos in ChimpACT capture chimpanzees in
their semi-naturalistic habitats at Leipzig Zoo, split between indoor (96 videos) and outdoor (67
videos) enclosures. The indoor space, spanning roughly 400 m2, features a plethora of environmental
enrichments, ranging from wooden climbing structures and hammocks to vegetation and foraging
boxes. When weather permits, the chimpanzees have access to a 4000 m2 outdoor area, replete with
vegetation, surrounded by an artificial river, and complemented by enrichments similar to the indoor
space. This blend of environments ensures the dataset’s relevance for both naturalistic and artificial
environments. The multifaceted physical and social surroundings of the chimpanzees further imbue
the dataset with intricate behaviors and social dynamics.

Ethogram with solitary and social behaviors ChimpACT captures the daily life of group-living
chimpanzees, offering invaluable insights into the evolution and sustenance of their social behav-
iors and relationships (Nishida et al., 2010). By focusing on a juvenile chimpanzee, ChimpACT
illuminates facets of social learning, communication, bonding, and more, all pivotal in the social
and ecological life of chimpanzees (Bard et al., 2014). To systematically represent these behaviors,
we composed an ethogram—a detailed catalog of behavioral categories, depicted in Fig. 2b (further
details in Appx. A). This ethogram organizes behaviors into four primary categories, like locomotion
and social interaction, each further subdivided into several fine-grained actions, meticulously anno-
tated and validated with expert oversight. By delving into these behaviors, ChimpACT elucidates not
only the social dynamics shaping social relationships but also the cognitive and ecological influences
on juvenile chimpanzee behaviors.

3.2 Dataset collection

The focal video data were collected with the Chimpanzee-A group housed at Leipzig Zoo, Germany,
using focal sampling (Altmann, 1974). Videographers were instructed to focus on Azibo and his
mother, Swela, but also on capturing the environmental context and his interactions with other
chimpanzees. Videos from ChimpACT were sampled from a larger set of around 405 hours of
longitudinal focal video recordings of the dyad between 2015 and 2018. These videos were recorded
by several research assistants during the daytime (7am–4pm) using tripod-mounted RGB cameras.
Two JVC Everio camera models were utilized across the years, filming with a framerate of 25 (Codec
H.264) and with resolutions of 720 ˆ 578 and 1280 ˆ 720, respectively. The mother-infant dyad
was filmed for about five hours each week during the observation period. The footage contains both
optical zoom and camera movements.

3.3 Dataset tasks and annotations

ChimpACT supports three tracks: (i) chimpanzee detection, tracking, and ReID, (ii) chimpanzee
pose estimation, and (iii) spatiotemporal action detection. We provide fine-grained annotations
for each track. From the extensive footage, we curated 163 video clips, each approximately 1000
frames in length. Fifteen adept annotators were then tasked with annotating bounding boxes, body
keypoints, and fine-grained behavioral classes for each chimpanzee at intervals of every 10 frames.
To ensure accuracy and consistency, a behavioral researcher familiar with the chimpanzee group
meticulously reviewed and refined the identity and behavioral class annotations. For a deeper dive
into the annotation process and its quality, please refer to Appx. A and our dedicated website.

Detection, tracking, and ReID This task encompasses the detection and tracking of individual
chimpanzees across video sequences, subsequently coupled with their re-identification. ChimpACT
features over 23 distinct chimpanzee individuals, each identified by a primate expert familiar with
the Leipzig A-group chimpanzees. Initially, annotators were instructed to delineate the bounding
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box of each chimpanzee, ensuring consistent box IDs for the same individual throughout a video
clip. Subsequently, the expert matched these box IDs with the corresponding true names of the
chimpanzees, resulting in the identification of 23 unique individuals. Additionally, every annotated
bounding box is attached with a visibility attribute, indicating if the chimpanzee is fully visible,
truncated, or occluded in a given frame. Such visibility annotations can support the reasoning of the
chimpanzee behavior, potentially bolstering tracking robustness. Fig. 3a illustrates the occurrence
frequency (on a log scale) of each individual, revealing a long-tail distribution. This pattern aligns
with the focal sampling strategy, where Azibo is the primary subject. Notably, Swela, Azibo’s mother,
also exhibits a high occurrence frequency, resonating with prior studies (Boesch, 1996).
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Figure 3: (a) Distribution (in log scale) of annotations for each indi-
vidual. (b) Distribution (in log scale) of annotations for each behavior.
Vector graphics; zoom for details.

Pose estimation Pose esti-
mation aims to predict the loca-
tions of the chimpanzee joints
that have semantic meaning,
such as the knee and shoulder,
from an input image. There
are four keypoints on the chim-
panzee’s face (i.e., two for the
eyes, and one each for the up-
per and lower lips), for a to-
tal of 16 chimpanzee keypoints
(refer to Sec. 3.3 and Fig. 4).
Annotators are tasked with
marking the 2D joint coordi-
nates and the visibility status
of each joint. We adopt the visi-
bility protocol from the COCO
2D human keypoint annota-
tions (Lin et al., 2014), where
a value of 0 indicates a joint
outside the image frame, 1 sig-
nifies an obscured joint within
the image, and 2 designates a
clearly visible joint. Such an
annotation protocol affords rea-
son about chimpanzee’s orientation and action based on facial joint visibility. For instance, the
chimpanzee might be eating something if the two lips are apart. Sample frames showcasing pose
annotations are depicted in Fig. 1. Notably, ChimpACT holds the potential for future expansion to
encompass pose tracking tasks, analogous to the PoseTrack (Andriluka et al., 2018) for humans.

Table 2: Keypoint definitions for chimpanzee.

No. Definition No. Definition

0 Root of hip 8 Right eye
1 Right knee 9 Left eye
2 Right ankle 10 Right shoulder
3 Left knee 11 Right elbow
4 Left ankle 12 Right wrist
5 Neck 13 Left shoulder
6 Upper lip 14 Left elbow
7 Lower lip 15 Left wrist

1

0
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8 9
10

11

12

13

14

15

Figure 4: Keypoint definitions for chimpanzee.

Spatiotemporal action detection Spatiotemporal action detection seeks to attribute one or multiple
behavioral labels to each bounding box containing a chimpanzee, leveraging the spatiotemporal
context within a video clip. Our ethogram, detailed in Fig. 2b, delineates 23 nuanced subcategories
of behaviors and guides the fine-grained annotations of chimpanzee behavior, such as “climbing”
within the “locomotion” category. Notably, within the realm of social interactions, we meticulously
differentiate between the action performer and receiver. For instance, the grooming behavior is
bifurcated into “grooming” and “being groomed.” Every chimpanzee in a frame has its subcategory
behavior annotated. It is not uncommon for an individual to simultaneously exhibit multiple behaviors,
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exemplified by Swela’s “carrying” and “moving” actions in Fig. 1. The distribution of these behavioral
annotations, visualized in Fig. 3b on a log scale, reveals a long-tail distribution, mirroring the authentic
behavioral tendencies of chimpanzees in their natural habitats.

nursing 1.55% 

others
0.14% 

20.17%
 

45.01%
34

.68
% 

0.002% displaying
0.14% 

manipulating object
1.03% 

climbing
1.89% 

Ethogram

carrying 0.63% 

being carried 
0.36% 

being nursed 
1.26% 

being begging 
from 0.07% 

begging 0.07% 

aggressing 0.06% 

taking object 0.02% 

losing object 0.02% 

erection

(a)

B
eh

av
io

rs

Chimpanzee names

touch
ing

play
ing

bein
g nurse

d

nursi
ng

bein
g ca

rri
ed

ca
rry

ing

losin
g obj.

tak
ing obj.

bein
g beg

ged

beg
ging

em
brac

ing

ag
gres

sin
g

bein
g gro

omed

gro
oming

Azib
o

Bam
bari

Ban
golo

Corri
e

Dorie
n

Fra
ukje

Fro
do
KaraKish

a
Kofi

Lobo
Lome

Maja
Mak

en
i

Nata
sc

ha

Ohini
Riet

Robert

San
dra

SwelaTa
ï
Ulla

Yo
uma

(b)
Figure 5: (a) Distribution of the annotated behavior categories. (b) Distribution showcasing individuals
alongside their respective social behaviors. Vector graphics; zoom for details.

Fig. 5a showcases the distribution of the annotated behaviors, with social interactions constituting
approximately 35% of the total annotations. Furthermore, Fig. 5b delineates the distribution of
labeled social behaviors across distinct individuals, highlighting grooming, playing, and touching as
predominant activities within the social dynamics of the group-living chimpanzees.

In essence, ChimpACT emerges as an invaluable resource for researchers spanning the domains
of primatology, comparative psychology, computer vision, and machine learning. It furnishes a
comprehensive and varied array of annotations, paving the way for in-depth analysis of multifaceted
chimpanzee behaviors and catalyzing the development of advanced machine learning algorithms. The
inherent long-tail distribution not only presents a formidable challenge for chimpanzee identification
and behavior recognition but also beckons explorations into few-shot learning in future endeavors.

4 Experiments

To rigorously assess ChimpACT, we benchmark a suite of representative methods across the afore-
mentioned three tracks: (i) detection, tracking, and ReID, (ii) pose estimation, and (iii) spatiotemporal
action detection. Our computational framework leverages four NVIDIA GeForce RTX 3090 GPUs
(24GB) for both training and evaluation across all tracks. In the subsequent sections, we delve into
the implementation details, baseline methods, and evaluation metrics for each track.

4.1 Detection, tracking, and ReID

Setting We evaluate several prominent Multiple Object Tracking (MOT) algorithms on ChimpACT,
including both classical methods such as SORT (Bewley et al., 2016), DeepSORT (Wojke et al., 2017),
and Tracktor (Bergmann et al., 2019), as well as the state-of-the-art methods such as ByteTrack (Zhang
et al., 2022), and OC-SORT (Cao et al., 2023). All implementations are based on the MMTracking
(Contributors, 2020a) codebase. For those methods supporting flexible detection backbones, we trial
two typical detectors, including the two-stage detector Faster R-CNN (Ren et al., 2015) and the
one-stage detector YOLOX (Ge et al., 2021). Each method undergoes training for 10 epochs, adhering
to the official configurations, which encompass optimizer settings, batch size, data augmentation
techniques, and pre-trained models. Given that the three classical methods lack inherent ReID
modules, we supplement with a dedicated ReID network built on ResNet-50 (He et al., 2016). The
training curves of select methods (refer to Fig. A2a) affirm convergence within the training epochs.

We split the video clips in ChimpACT into 80% train, 10% validation, and 10% test. Both the train set
and test set cover all the individuals. Models are trained on the training set, with performance metrics
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Table 3: Results of the detection, tracking, and ReID track on the ChimpACT test set. The row highlighted
in light blue is the performance reference on the human tracking dataset MOT-17 (Milan et al., 2016). ´ denotes
not applicable. m denotes unreported.
Method Detector ReID HOTA Ò MOTA Ò MOTP Ò IDF1 Ò mAP Ò nFP Ó nFN Ó nIDs Ó

SORT Faster R-CNN 42.6˘1.0 47.4˘0.6 22.9˘1.3 42.7˘1.2 70.7˘1.6 19.1˘0.3 31.4˘0.5 2.1˘0.0

(Bewley et al., 2016) YOLOX ResNet-50 39.8˘0.8 43.2˘1.3 20.3˘0.5 37.7˘1.7 71.4˘1.6 16.1˘3.1 37.8˘1.7 2.8˘0.5

DeepSORT Faster R-CNN 47.6˘0.4 46.7˘0.5 23.0˘1.2 52.8˘1.5 70.7˘1.6 19.0˘0.3 31.4˘0.5 2.9˘0.1

(Wojke et al., 2017) YOLOX ResNet-50 40.2˘1.0 43.2˘1.2 20.3˘0.5 38.4˘1.9 71.4˘1.6 16.1˘3.1 37.8˘1.7 2.9˘0.6

Tracktor
(Bergmann et al., 2019) Faster R-CNN ResNet-50 49.5˘0.7 50.5˘1.1 22.6˘1.1 55.6˘1.2 70.7˘1.6 13.8˘0.5 35.2˘0.7 0.5˘0.0

QDTrack
(Pang et al., 2021) Faster R-CNN ´ 50.3˘3.2 54.2˘4.6 22.2˘1.4 55.8˘3.6 77.8˘2.0 19.7˘3.6 24.6˘0.8 1.4˘0.2

ByteTrack Faster R-CNN ´ 43.7˘0.3 36.9˘2.2 24.6˘0.3 48.8˘1.3 68.2˘1.1 27.7˘1.1 34.2˘1.0 1.2˘0.2

(Zhang et al., 2022) YOLOX ´ 49.2˘0.8 43.9˘1.3 20.3˘1.0 55.2˘1.1 70.3˘1.0 18.0˘7.4 37.4˘6.1 0.7˘0.0

OC-SORT Faster R-CNN ´ 43.4˘1.0 38.2˘1.9 24.3˘0.2 48.7˘2.2 68.7˘0.8 25.0˘1.6 35.6˘1.5 1.2˘0.1

(Cao et al., 2023) YOLOX ´ 47.9˘0.4 42.1˘2.6 20.5˘0.8 53.3˘0.8 70.5˘0.8 20.3˘1.3 36.6˘2.1 1.1˘0.3

OC-SORT
(Cao et al., 2023) YOLOX ´ 63.2 78.0 m 77.5 m 2.7 19.0 0.3

reported on the test set. We employ widely-accepted evaluation metrics, drawing from convention
in human/object detection, tracking, and ReID (Bewley et al., 2016; Pang et al., 2021; Zhang et al.,
2022). Specifically, we utilize (i) mean Average Precision (mAP) Lin et al. (2014) to gauge the
detection accuracy, and (ii) the CLEAR metrics (Bernardin and Stiefelhagen, 2008) (MOTA, MOTP,
FP, FN, IDs), IDF1 (Ristani et al., 2016), and HOTA (Luiten et al., 2021) to evaluate various facets of
the tracking performance. It is worth noting that for FP, FN, and IDs, we report normalized values
and denote these metrics as nFP, nFN, and nIDs, respectively.

Results Tab. 3 summarizes these tracking algorithms’ performances on the ChimpACT test set.
We conducted three runs for each method and reported the average and variance of these metrics.
Notably, the variance across multiple runs is minimal, underscoring the robust reproducibility of our
benchmarking. A holistic view of the results reveals that QDTrack (Pang et al., 2021) emerges as the
top performer. However, it does suffer from a higher count of identity switches compared to other
methods. In terms of detection performance, the YOLOX algorithm (Ge et al., 2021) stands toe-to-toe
with Faster R-CNN (Ren et al., 2015). A discernible trend is evident among contemporary tracking
methods, which seem to excel in identity association capabilities over their classical counterparts.
This is corroborated by marked improvements in tracking metrics like IDF1 and IDs. Such a trend
intimates that the latest tracking methods might be adept at maintaining consistent object identities, a
pivotal aspect when tracking and analyzing individual trajectories within chimpanzee cohorts.

While the results garnered by the array of tracking algorithms are commendable, they still lag behind
the benchmarks set on human-centric datasets (Zhang et al., 2022; Pang et al., 2021; Cao et al.,
2023). This disparity can be attributed to challenges like the low contrast and low color variation
of the body fur of chimpanzees, compounded by intricate self-occlusions. Nonetheless, this very
observation accentuates the significance of ChimpACT. It not only offers a challenging arena for
tracking algorithms but also stands as an ideal platform for pioneering and refining tracking methods
tailored for chimpanzees and other non-human primates.

4.2 Pose estimation

Setting We benchmark several state-of-the-art human pose estimation methods on ChimpACT,
including CPM (Wei et al., 2016), SimpleBaseline (Xiao et al., 2018), HRNet (Sun et al., 2019),
DarkPose (Zhang et al., 2020). Broadly, human pose estimation methods can be bifurcated into two
primary paradigms: heatmap-based and regression-based. We harness the MMPose (Contributors,
2020b) framework for implementing these methods. Please refer to Appx. C for more implementation
details. All the models undergo training for 210 epochs, maintaining the official configurations for
optimizers, batch sizes, and learning rates. To gauge any potential model overfitting, we present the
validation curve on the AP metric in Fig. A2b, reassuringly suggesting an absence of overfitting.

The train/test partitioning mirrors that of the first track. We use mAP with various thresholds, adhering
to the conventions of human pose estimation (Lin et al., 2014). Additionally, we report the Percentage
of Correctly estimated Keypoints (PCK) metric (Andriluka et al., 2014; Ng et al., 2022). PCK@α
quantifies the fraction of accurately predicted keypoints within a distance threshold defined as
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Table 4: Results of the pose estimation track on ChimpACT test set. The row highlighted in light blue is the
performance reference on the human pose estimation dataset COCO (Lin et al., 2014). m denotes unreported.

Method Backbone PCK@0.05 PCK@0.1 AP AP50 AP75 APM APL AR

SimpleBaseline
(Xiao et al., 2018)

ResNet-50 25.3˘0.5 46.2˘0.5 8.6 ˘0.4 27.4˘1.3 3.9 ˘0.4 0.3˘0.1 12.5˘0.5 17.3˘0.7

ResNet-101 26.2˘1.0 46.4˘1.1 8.7 ˘0.4 27.5˘0.6 4.2 ˘0.5 0.3˘0.0 12.9˘0.2 17.7˘0.4

ResNet-152 26.3˘0.4 47.3˘0.8 9.3 ˘0.1 29.2˘1.1 4.7 ˘0.3 0.5˘0.0 13.4˘0.2 18.6˘0.0

RLE
(Li et al., 2021)

MobileNetV2 27.5˘1.4 48.1˘1.7 16.7˘0.8 43.1˘2.7 11.1˘0.8 2.0˘0.7 17.7˘0.8 19.5˘0.9

ResNet-50 28.2˘1.7 47.1˘3.1 16.3˘2.5 41.2˘6.9 11.4˘1.4 1.3˘0.8 17.4˘2.8 20.0˘1.6

ResNet-101 28.2˘3.5 46.5˘4.3 16.2˘2.6 41.1˘5.7 10.8˘2.4 2.1˘0.1 17.3˘2.8 20.1˘2.1

R
e g

re
ss

io
n

ResNet-152 30.0˘1.3 48.4˘2.2 18.1˘2.8 43.0˘7.9 13.5˘0.6 1.4˘0.3 19.2˘3.2 22.3˘1.1

CPM
(Wei et al., 2016) CPM 40.7˘0.2 60.4˘0.0 21.6˘0.1 51.0˘0.4 17.1˘0.1 9.5˘0.6 22.4˘0.1 25.4˘0.1

Hourglass
(Newell et al., 2016) Hourglass-4 44.6˘0.5 60.8˘0.1 20.6˘0.3 48.9˘0.1 16.0˘0.4 4.6˘0.1 23.7˘0.6 28.2˘0.2

MobileNetV2
(Sandler et al., 2018) MobileNetV2 39.8˘0.4 59.4˘0.4 19.4˘0.1 48.5˘0.6 14.3˘0.8 2.3˘0.1 20.6˘0.1 23.2˘0.1

SimpleBaseline
(Xiao et al., 2018)

ResNet-50 43.3˘0.2 61.7˘1.2 22.1˘0.2 51.5˘0.4 17.7˘0.2 3.7˘0.4 23.4˘0.2 26.3˘0.1

ResNet-101 42.8˘0.3 60.7˘0.2 21.7˘0.1 52.5˘0.4 16.7˘0.0 4.3˘0.2 23.0˘0.1 26.2˘0.2

ResNet-152 43.9˘0.4 61.6˘0.1 22.7˘0.4 53.4˘0.6 18.3˘0.4 5.3˘0.5 23.9˘0.4 27.1˘0.1

HRNet
(Sun et al., 2019)

HRNet-W32 48.6˘0.9 65.6˘0.6 25.9˘0.4 58.2˘0.8 22.1˘0.4 6.1˘0.4 27.0˘0.6 30.3˘0.5

HRNet-W48 47.3˘0.2 64.5˘0.2 25.1˘0.1 57.2˘0.6 21.0˘0.1 6.9˘0.9 26.2˘0.3 29.6˘0.1

DarkPose
(Zhang et al., 2020)

ResNet-50 43.7˘0.0 62.1˘0.6 22.8˘0.1 53.8˘0.8 18.8˘0.6 3.4˘0.2 24.1˘0.0 27.1˘0.1

ResNet-101 43.1˘0.9 61.2˘1.4 22.1˘0.3 52.6˘0.6 17.6˘0.7 4.0˘0.4 23.4˘0.3 26.5˘0.3

ResNet-152 43.5˘0.3 61.2˘0.2 22.4˘0.1 53.2˘0.1 17.4˘0.3 4.6˘0.0 23.7˘0.1 26.7˘0.1

HRNet-W32 48.7˘0.5 65.6˘0.9 25.7˘0.4 58.4˘0.8 21.3˘0.8 5.6˘0.4 26.9˘0.2 30.1˘0.2

HRNet-W48 47.6˘0.7 64.5˘1.0 25.8˘0.4 58.0˘1.7 21.5˘0.3 6.6˘0.5 27.0˘0.4 30.2˘0.5

HRFormer
(Yuan et al., 2021)

HRFormer-S 45.1˘0.4 61.4˘0.4 23.0˘0.0 53.1˘0.4 19.7˘0.2 5.5˘1.6 24.1˘0.2 27.1˘0.1

H
ea

tm
ap

-b
as

ed

HRFormer-B 46.4˘0.3 63.0˘0.1 24.1˘0.6 55.3˘1.0 20.1˘0.1 5.2˘0.4 25.4˘0.5 28.2˘0.4

HRNet
(Sun et al., 2019) HRNet-W32 m m 74.4 90.5 81.9 70.8 81.0 79.8

α ˆ maxpheight, widthq, derived from the bounding box of the chimpanzee. This metric is widely
recognized for its accuracy in body joint localization in both human and animal pose estimation.

Results Tab. 4 consolidates these pose estimators’ performances on the ChimpACT test set. Notably,
the heatmap-based DarkPose (Zhang et al., 2020) with an HRNet (Sun et al., 2019) backbone emerges
as the top-performing model. This trend aligns with observations in human pose estimation, where
heatmap-centric methods (Wei et al., 2016; Xiao et al., 2018; Newell et al., 2016; Sun et al., 2019)
predominantly lead the pack, attributed to their robustness against pose and appearance variations.
However, the heatmap representation may be less accurate in scenarios where multiple joints are
occluded or closely spaced, and it demands heftier computational and memory resources. Conversely,
the newer regression-based methods (Li et al., 2021) are computationally leaner but tend to be more
susceptible to overfitting and generally lag in performance.

These results underscore that the task of chimpanzee pose estimation is distinct and nuanced, and
cannot be seamlessly addressed by merely repurposing human-centric pose estimation methods. We
believe there are two primary reasons for this: (i) chimpanzees exhibit unique joint flexibility and
a broader range of motion, and (ii) the visual texture and appearance of chimpanzee fur diverge
significantly from human skin. These insights emphasize the need for chimpanzee specific pose
estimation strategies.

4.3 Spatiotemporal action detection

Setting We benchmark four representative human action detection baselines on ChimpACT using
the MMAction2 (Contributors, 2020c) codebase, including ARCN (Sun et al., 2018), LFB (Wu et al.,
2019), and SlowFast with its variant SlowOnly (Feichtenhofer et al., 2019). All models undergo
training for 20 epochs with a batch size of 32. Convergence is evident from the training curves
in Fig. A2c. We maintain consistent optimizers and learning rates as in official implementations.
Ground-truth bounding boxes for each chimpanzee are provided during both training and testing, as
per Tang et al. (2020). Please refer to Appx. C for further details on ablative modules.
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Table 5: Results of spatiotemporal action detection track on ChimpACT test set. The row highlighted in light
blue is the performance reference on the human action dataset AVA (Gu et al., 2018). ´ denotes not applicable.
“w. NL/Max/Avg LFB” denotes using non-local, max, or average LFB module. “w. Ctx” indicates using both the
RoI feature and the global pooled feature for classification. “mAP,” “mAPL,” “mAPO ,” “mAPS ,” and “mAPo”
represent the overall mAP and mAP for Locomotion, Object interaction, Social interaction, and others.

Method Frame sampling Module mAP mAPL mAPO mAPS mAPo

8 ˆ 8 ˆ 1 24.4˘0.5 58.7˘0.7 33.8˘1.7 14.7˘0.4 0.0˘0.0ACRN
(Sun et al., 2018) 4 ˆ 16 ˆ 1 23.9˘1.3 57.8˘0.4 35.0˘4.0 13.8˘1.6 0.0˘0.0

4 ˆ 16 ˆ 1 w. NL LFB 22.0˘0.9 50.1˘0.8 32.3˘0.9 13.5˘1.6 0.6˘0.1

4 ˆ 16 ˆ 1 w. Max LFB 23.2˘0.7 45.0˘1.5 31.2˘0.8 17.7˘1.4 0.5˘0.0
LFB
(Wu et al., 2019)

4 ˆ 16 ˆ 1 w. Avg LFB 21.3˘1.6 45.0˘3.6 29.8˘1.1 14.7˘2.6 0.5˘0.0

8 ˆ 8 ˆ 1 20.9˘1.9 48.1˘7.0 36.2˘2.8 11.5˘1.0 0.0˘0.1

4 ˆ 16 ˆ 1 19.2˘1.1 47.0˘2.5 28.3˘2.5 11.0˘1.2 0.0˘0.1

8 ˆ 8 ˆ 1 w. Ctx 22.3˘1.9 52.3˘3.2 31.2˘1.3 13.8˘2.4 0.1˘0.1

SlowOnly
(Feichtenhofer et al., 2019)

4 ˆ 16 ˆ 1 w. Ctx 21.4˘0.9 47.6˘2.0 33.0˘1.2 13.2˘2.2 0.2˘0.1

8 ˆ 8 ˆ 1 21.9˘1.0 53.0˘0.7 30.6˘2.2 12.9˘1.2 0.0˘0.1

4 ˆ 16 ˆ 1 22.0˘0.8 52.9˘2.3 33.1˘2.3 12.6˘0.9 0.0˘0.0

8 ˆ 8 ˆ 1 w. Ctx 24.3˘0.6 56.8˘1.6 31.5˘2.0 15.6˘0.8 0.1˘0.1

SlowFast
(Feichtenhofer et al., 2019)

4 ˆ 16 ˆ 1 w. Ctx 24.1˘0.9 56.6˘2.0 34.7˘2.7 14.6˘0.4 0.1˘0.1

SlowFast
(Feichtenhofer et al., 2019) 8 ˆ 8 ˆ 1 25.8 ´ ´ ´ ´

We adopt the same train-test split as previous tracks. Performance is gauged using mAP across 23
action classes, as per standard (Feichtenhofer et al., 2019; Tang et al., 2020). Additionally, we evaluate
the mAP within the four behavioral types separately.

Results Tab. 5 summarizes the action detection algorithms’ performances on the ChimpACT test
set. The overall mAP aligns with results on human action datasets, underscoring the feasibility of
automated action detection for video coding and further analyses. Locomotion behaviors achieve a
notably higher mAP, likely due to their solitary nature and distinct patterns. Conversely, Conversely,
the “others” category registers the lowest mAP, attributed to its limited data—comprising just 0.14%
of action instances across two fine-grained classes. This imbalance suggests the potential benefit
of few-shot learning methods in the future. The results highlight both the promise and areas for
improvement in the dataset, positioning it as a valuable platform for advancing spatiotemporal action
detection algorithms. We anticipate that ChimpACT will further studies into the social dynamics of
non-human primates in semi-naturalistic environments.

5 Conclusion

In this work, we introduced ChimpACT, a novel longitudinal video dataset capturing the intricate
behaviors of group-living chimpanzees, focusing on the juvenile chimpanzee, Azibo. Our meticulous
annotations and diverse social interactions within the dataset offer a unique view into the world of our
closest evolutionary relatives. Through comprehensive experiments, we underscored the challenges
and nuances of applying human-centric computer vision algorithms to the distinct behaviors and
interactions of chimpanzees. The dataset’s depth, combined with its long-tail distribution, not only
emphasizes its significance but also paves the way for interdisciplinary research bridging primatology,
comparative psychology, computer vision, and machine learning. By making this resource available,
our aspiration is to catalyze advancements in video understanding, inspire the research community
to craft specialized techniques for non-human primates and deepen our collective insights into their
intricate social fabric and dynamics.

Limitation and future work ChimpACT is based on captive chimpanzees living in a semi-natural
environment, limiting the observable range of behaviors. Natural foraging, responses to predators,
and intergroup encounters are absent. Focusing on Azibo overrepresents certain individuals and
underrepresents others, limiting the assessment of the full social network. Nevertheless, we plan to
contribute more data and labels to create a larger and more comprehensive chimpanzee dataset.
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