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• We use the OpenLock task, initially presented in Edmonds et al.,
2018. In the task, agents are required to “escape” from a virtual
room by unlocking and opening a door.

• The door unlocks after manipulating the levers in a particular
sequence (see Figure 1). Each room consists of seven levers
surrounding a robotic arm that can push or pull on each lever.

• Agents observe the color of the levers and are expected to learn
that grey levers–but not white levers–are always part of solutions
in each room. Importantly, agents are tasked with finding all
possible solutions for opening the door within a room.

• The mechanics underlying the environment obey one of two
causal schemas: Common Cause (CC) and Common Effect (CE)
(see Figure 3).

INTRODUCTION
• Learning and storing abstract causal descriptions of the world
enables generalization and transfer to new domains.

• Humans show a remarkable ability to form and utilize abstract
causal structures to adapt and perform in novel domains.

• We task humans and agents to perform in a virtual “escape room”
that requires reasoning about abstract causal structures and low-
level properties of the scene. In this work, we model human
causal learning as a two-component process:
1. A bottom-up associative account that links attributes of objects
to causal effects.

2. A top-down causal structure account that encodes the latent
structures most useful for the present task.

• The proposed model captures similar trends as human
participants for multiple, suggesting human causal learning may
rely on a synergy between a bottom-up associative learning
scheme and a top-down structural learning scheme.

METHOD & PROCEDURE

• We approach the problem from the perspective of active causal
theory learning, where we expect an agent endowed with no
information to learn the underlying abstract mechanics and
commonalities between environments through interaction.

• In this work, we adhere to two general principles of learning:
1. Causal relations induce state changes in the environment, and
non-causal relations do not (referred to as our bottom-up β
theory).

2. Causal structures that have previously been useful may be
useful in the future (referred to as our top-down γ theory).

CAUSAL THEORY INDUCTION CONCLUSION
• We showcase a hierarchical model based on associative learning
and schema reasoning.

• Our model integrates two learning mechanisms:
1. A bottom-up theory that learns which attributes have causal
associations in the environment

2. A top-down theory that learns useful abstract structures in the
environment.

• Our agent chooses an intervention based on the posterior of
causal chains and updates its model using the observed outcome
of the intervention.

• Model results show that our hybrid agent is able to capture
general trends observed in human participants and captures some
of the statistical significance observed in human performance.

• These results suggest that human causal learning may consist of
a mechanism that combines bottom-up associative learning with
top-down reasoning about causal structure.

DISCUSSION
How can hypothesis space enumeration be avoided?
• The spaces of Ω"# and Ω"$ are enumerated in this work.
Hypothesis space enumeration can quickly become intractable as
problems increases. Future work will include examining how
sampling-based approaches to iterative generate causal
hypotheses.

What are the other possibilities of bottom-up associative
criteria?
• Our method treats low-level attributes as the criteria for our
bottom-up associative learning. However, other possibilities are
equally valid; a modeler could pair attributes with specific
actions and learn distributions of causal effects over this pairing.

FUTURE DIRECTIONS
• The underlying computational framework presented here is
broadly applicable outside of the OpenLock environment; it can
be applied to any reinforcement learning environment where: (i)
underlying dynamics are constrained by some causal structure;
(ii) interactive elements have observable features which signal
causal relevance; and (iii) physical locations of key elements
change over time.

• We also hope to expand our model to account for more extreme
observational changes. For example, what if levers could
suddenly be rotated instead of pushed/pulled? What if new colors
were introduced which provided further cues about causal
relevance? And what if the environment began operating in a
probabilistic fashion where levers may fail to actuate properly?
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Figure 2: (a) Initial configuration of the room containing three active levers.
The arm interacts with levers by pushing/pulling them outward/inward.
Once the door is unlocked, the green button can be clicked to command the
arm to push the door open. The black circle located opposite the door’s red
hinge represents the door lock indicator (present if locked, absent if
unlocked). (b) Pushing on a lever. (c) Opening the door by clicking the
green button.

Figure 3: Common Cause (CC) and Common Effect (CE) structures used in
the OpenLock task, in which 𝐿& indicates a lever in the scene, and 𝐷
indicates the effect of opening the door.

• The human results in Figure 5 demonstrate significant learning
appeared to occur in the early trials for both the first and second
solution.

• For participants who trained under a CC schema, attempts needed
to find the first solution decreased significantly following both the
first trial and second trial.

• For the second solution, the number of attempts needed decreased
significantly following the first trial only.

• The model results show a similar trend as humans but with
slightly worse performance in each trial.

• For the agent assigned to the CC condition, the number of
attempts needed to find the first solution decreased significantly
following the first trial and second trial.

• The CE agent required less attempts to find the first solution
following the first trial only.

Figure 4: (a) An illustration of hierarchical structure of the model. A
bottom-up associative learning theory, β, and a top-down causal theory, γ,
serve as priors for the rest of the model. The model makes decisions at the
causal chain resolution. (b) Atomic causal chain. The chain is composed by
a set of subchains, 𝑐& , where each 𝑐& is defined by: (i) 𝑎& , an action node that
can be intervened upon by the agent, (ii) 𝑠& , a state node capturing the time-
invariant attributes and time-varying fluents of the object, (iii) 𝑐𝑟&, , the
causal relation between 𝑎& and 𝑠& , and (iv) 𝑐𝑟&-, the causal relation between
𝑠& and 𝑠&./.

Figure 5: Comparison of human and model results for the common-cause
CC3 condition and the common-effect CE3 condition. (a) and (b) compare
the total number of attempts to find all solutions; (c) and (d) compare the
number of attempts to find the first solution; (e) and (f) compare the number
of attempts to find the second solution.
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Attribute Learning: Attributes provide time-invariant properties of
an object; we learn which attributes are associated with causal events.
• For a particular causal chain, we want to assess the likelihood that
the attributes (𝜙&1 ) of the objects in the chain have been
associated with causal events (𝜌&) in the past:

Schema Learning: We utilize a Bayesian hierarchy, starting abstract
structural schemas 𝑔4, that encode abstract descriptions of the task.
• Using the Bayesian prior, we infer which instantiated schemas 𝑔5
are most likely to succeed, based on which abstract structures
were useful in the past:

• Next we infer which chains are most useful based on which
instantiated schemas are believed to be most useful:

• Finally, the agent makes decisions by combining the top-down
schema reasoning (prior) and the bottom-up attribute learning
(likelihood) to obtain a final posterior for a chain, and the agent
executes the chain with the highest posterior at each time step:

RESULTS

Figure 1: Six rooms used to ensure agents form abstract notion of task
structure instead of overfitting to a specific room configuration.


