OCTOBER 1 - 5, 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems

Introduction

Motivation: Understand object fragmentation

2023

iROS

- Understand fragments:
- Different fragments look alike, whereas some of them are pre-attentively different.
- How to properly discriminate fragments?
- Understand transitions in object fragmentation:
- Changing **instance number** and **shape**.
- Large state (i.e., fluent) space.

Modeling fragmentation via attributed stochastic grammar

- We use a grammar model to define the states and transitions
- **Nodes** represent fragment types.
- Production rules define the one-tomany transitions.
- A parse tree represents a specific fragmentation process.
- The set of terminal nodes in a parse tree defines the state resulted from a fragmentation process.

Planning with the grammar for object cutting

- Planning for object cutting is equivalent to inferring an optimal parse tree of the grammar.
- The learned production rule can **generalize** to cutting unseen objects.

Learning a Causal Transition Model for Object Cutting

Zeyu Zhang^{1,2*}, Muzhi Han^{1,2*}, Baoxiong Jia^{1,2}, Ziyuan Jiao^{1,2}, Yixin Zhu⁴, Song-Chun Zhu^{1,3,4}, Hangxin Liu^{1†}

¹National Key Laboratory of General Artificial Intelligence, Beijing Institute for General Artificial Intelligence (BIGAI). ²Center for Vision, Cognition, Learning, and Autonomy, UCLA. ³School of Intelligence Science and Technology, Peking University. ⁴Institute for Artificial Intelligence, Peking University. *Equal contributions +Corresponding Author

Framework Overview

Learning grammar from collected object cutting data

- We induce the grammar from human demonstrations of object cutting:
- Extract shape features for each fragment, and cluster them into k fragment types.
- Learn grammar from recorded transitions with a MAP objective.
- The objective balances the number of fragment types k and grammar complexity.

Planning as Inference: Inferring an optimal parse tree

- Given the point clouds of the current and goal configuration, we use a pre-trained encoder and an MLP to predict the **fragment type probabilities**.
- We adopt Monte-Carlo Tree Search to find the optimal parse tree that transits the current configuration to the goal.

Bridging abstracted actions and continuous motion

^k)
$$p(\mathcal{G}^k)$$

$$p(\alpha_i \to \beta_i \mid \mathcal{G}^k) \cdot \underbrace{e^{\gamma \mid \mathcal{G}^k \mid}}_{\text{model prior}},$$

data likelihood

Initia Task Setup Seen N=1, M=1 N=1, M=2 N=2, M=1 N=2, M=2 Unseen N=2, M=3 N=3, M=4

action

Evaluation

Partitioning of the training and test sets

Training: Testing: $N \geq 1, M \geq 1$

• N: initial number of objects.

• *M*: number of fragment types in

Qualitative and quantitative evaluation results

BC		QNet		Ours		Human	
IoU	HR	IoU	HR	IoU	HR	IoU	HR
0.37 ± 0.11	2.19 ± 1.07	0.40 ± 0.16	2.14 ± 1.21	0.58 ± 0.08	4.32 ± 0.77	0.57 ± 0.03	4.48 ± 0.96
$\begin{array}{c} 0.35 \pm 0.08 \\ 0.44 \pm 0.08 \\ 0.42 \pm 0.03 \\ 0.38 \pm 0.03 \\ 0.20 \pm 0.04 \end{array}$	1.76 ± 0.87 1.64 ± 0.65 2.07 ± 0.86 1.73 ± 0.99	0.32 ± 0.12 0.34 ± 0.16 0.29 ± 0.09 0.28 ± 0.09	1.95 ± 0.87 1.19 ± 0.39 1.24 ± 0.43 1.52 ± 0.92	0.49 ± 0.06 0.56 ± 0.03 0.52 ± 0.04 0.52 ± 0.03	3.60 ± 1.02 3.69 ± 0.89 3.74 ± 0.90 3.21 ± 0.86	0.62 ± 0.07 0.62 ± 0.09 0.56 ± 0.04 0.60 ± 0.04	4.86 ± 0.35 4.83 ± 0.37 4.79 ± 0.56 4.81 ± 0.55
0.38 ± 0.04	1.57 ± 0.62	0.22 ± 0.08	1.26 ± 0.49	$\boldsymbol{0.52} \!\pm\! 0.02$	3.21 ± 0.86	0.56 ± 0.04	4.81 ± 0.55

Real world object-cutting experiments

action 2

action 3

finalstate