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Motivation: Understand object fragmentation

• Understand fragments: 

• Different fragments look alike, whereas some of
them are pre-attentively different.

• How to properly discriminate fragments?

• Understand transitions in object fragmentation: 

• Changing instance number and shape.

• Large state (i.e., fluent) space.

Modeling fragmentation via attributed stochastic grammar

• We use a grammar model to define the
states and transitions

• Nodes represent fragment types.

• Production rules define the one-to-
many transitions.

• A parse tree represents a specific
fragmentation process.

• The set of terminal nodes in a parse
tree defines the state resulted from a 
fragmentation process.

Planning as Inference: Inferring an optimal parse tree

• Given the point clouds of the current and goal configuration, we use a pre-trained 
encoder and an MLP to predict the fragment type probabilities.

• We adopt Monte-Carlo Tree Search to find the optimal parse tree that transits the 
current configuration to the goal. 

Bridging abstracted actions and continuous motion

• Each production rule is 
associated with a 
cutting action, 
parameterized by a 
cutting plane.

• We fit a GMM to the 
cutting plane 
parameters using 
human cutting data.

Partitioning of the training and test sets
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Training: 
𝑁 = 1,𝑀 = 1
Testing: 
𝑁 ≥ 1,𝑀 ≥ 1

• 𝑁: initial number 
of objects.

• M: number of 
fragment types in 
goal.

Qualitative and quantitative evaluation results 
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Learning grammar from collected object cutting data

• Planning for object cutting is equivalent to inferring an optimal parse 
tree of the grammar.

• The learned production rule can generalize to cutting unseen objects.

Planning with the grammar for object cutting

• We induce the grammar from human demonstrations of object cutting:

• Extract shape features for each fragment, and cluster them into 𝒌 fragment types.

• Learn grammar from recorded transitions with a MAP objective.

• The objective balances the number of fragment types 𝒌 and grammar complexity.
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