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Abstract
The role of mental simulation in human physical reasoning is
widely acknowledged, but whether it is employed across sce-
narios with varying simulation costs and where its boundary
lies remains unclear. Using a pouring-marble task, our human
study revealed two distinct error patterns when predicting pour-
ing angles, differentiated by simulation time. While mental
simulation accurately captured human judgments in simpler
scenarios, a linear heuristic model better matched human pre-
dictions when simulation time exceeded a certain boundary.
Motivated by these observations, we propose a dual-process
framework, Simulation-Heuristics Model (SHM), where intu-
itive physics employs simulation for short-time simulation but
switches to heuristics when simulation becomes costly. By inte-
grating computational methods previously viewed as separate
into a unified model, SHM quantitatively captures their switch-
ing mechanism. The SHM aligns more precisely with human
behavior and demonstrates consistent predictive performance
across diverse scenarios, advancing our understanding of the
adaptive nature of intuitive physical reasoning.
Keywords: intuitive physics; physical reasoning; mental simu-
lation; heuristic model

Introduction
Humans demonstrate extraordinary abilities in understanding
and reasoning about the physical world even without formal
training in physics (Piloto et al., 2022). This ability, known
as intuitive physics (J. R. Kubricht et al., 2017), enables com-
prehending physical concepts (Baillargeon et al., 1985; Bail-
largeon & Graber, 1987; Kim & Spelke, 1992), predicting
physical dynamics (P. W. Battaglia et al., 2013; C. Bates et
al., 2015; Davis et al., 2017), and interacting with the physi-
cal environments (Allen et al., 2020). However, human intu-
itive physics may exhibit errors and biases in certain physi-
cal scenarios, indicating deviations from classical Newtonian
physics (McCloskey et al., 1980, 1983; Kaiser et al., 1986;
Kozhevnikov & Hegarty, 2001). Such errors and biases serve
as a unique aspect of human reasoning, offering a valuable
avenue for studying the underlying mechanisms of intuitive
physics (J. R. Kubricht et al., 2017).

A common perspective to understanding human intuitive
physics is mental simulation: it hypothesizes an approximate
intuitive physics engine in the human mind (P. W. Battaglia et
al., 2013; K. A. Smith & Vul, 2013; T. D. Ullman et al., 2017;
K. Smith et al., 2024). This simulation framework, grounded
in probabilistic inference, was found to be able to character-
ize human behavior across various physical tasks, and also
account for human errors and biases, further validating its rel-
evance and applicability (P. Battaglia et al., 2012; J. Kubricht

et al., 2016, 2017; Gerstenberg et al., 2017; T. D. Ullman et
al., 2018; C. J. Bates et al., 2019; Bass et al., 2021; Chen et
al., 2023; Li et al., 2023). Nevertheless, the simulation model
fails to completely explain the variance in human behavior in
some demanding or unfamiliar conditions (Schwartz & Black,
1999; Kozhevnikov & Hegarty, 2001; K. A. Smith et al., 2018;
Ludwin-Peery et al., 2020, 2021), suggesting the existence
of alternative cognitive mechanisms, possibly mental short-
cuts employed for certain physical scenarios, or heuristics
(Davis, 1998; Davis et al., 2017; Kozhevnikov & Hegarty,
2001; J. R. Kubricht et al., 2017; K. A. Smith et al., 2018).
Recent work has further explored these limitations, showing
that mental simulation has severe capacity constraints. Bal-
aban & Ullman (2024) found that people can track only a
single moving object in imagination. Li et al. (2023) showed
that people use simplified object approximations for physical
reasoning, employing shortcuts that reduce computational de-
mands. Particularly relevant to our work, T. Ullman & Wang
(2023) identified a switch point in a fluid-reasoning task where
prediction patterns changed based on simulation demands.
These findings in capacity constraints raise important ques-
tions about how humans might adapt their reasoning strategies
when faced with increasingly complex physical scenarios.

Here we ask the questions: Do humans consistently rely
on mental simulation, or do they employ alternative heuristic
strategies under certain conditions? What are the situations
that prompt a switch between these two cognitive strategies?

Previous studies have investigated the interplay between
simulation and heuristics, providing evidence for qualitative
insights. For instance, Kozhevnikov & Hegarty (2001) demon-
strates that people tend to use impetus heuristics in quick
judgment scenarios, while P. W. Battaglia et al. (2013) finds
that models based on height heuristics can more accurately
explain human judgment in certain tasks, such as predicting
the falling distance of a block tower. Furthermore, K. A. Smith
et al. (2017) and Yildirim et al. (2017) suggest that humans
integrate these two cognitive strategies in motion prediction
and physical planning tasks, respectively. However, there is
currently no study that has provided clear evidence supporting
the relationship between these two strategies or quantitatively
demonstrated the transition between them. A comprehensive
exploration is needed to understand whether a switch of poli-
cies exists and, if so, how these switches operate, as well as to
identify alternative heuristics that could reverse engineer the
human physical reasoning process, including human biases.
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Figure 1: (A) Experimental design: Trials involved 3 cup shapes (H-shape, A-shape, V-shape), 3 object shapes (circle, triangle, trapezoid), 3
sizes (large, medium, small), and 2 filling heights (full, half), totaling 54 unique conditions. Participants predicted the tilt angle for marbles to
fall out when cups are tilted to the left. (B) SHM hypothesis: Participants used either mental simulation, simulating the tilting process until
pouring out, or a heuristic strategy, reaching judgments from physical features when the simulation exceeds a boundary. These methods could
result in different outcomes. (C) Human results: Each point represents a condition, illustrating human tendencies to either overestimate or
underestimate the pouring angle. The red and blue lines are the regression results of Intuitive Physics Engine (IPE) and the heuristic model,
respectively. The SHM effectively captures human behavior with a switching boundary.

In our study, we systematically investigate the switch be-
tween simulation and heuristic strategies in intuitive physics,
developing a computational model that offers improved ex-
planatory power. We hypothesize that: (i) the simulation strat-
egy prevails in scenarios simple enough for reliable physical
unfolding; (ii) the heuristic strategy takes over when men-
tal simulation becomes too costly; (iii) the switching point
of the two strategies correlates with the simulation cost, ap-
proximated via a proxy of simulation time. Diverging from
previous studies that often focused on simpler dynamics or
predictable outcomes (P. W. Battaglia et al., 2013; K. A. Smith
& Vul, 2013; K. A. Smith et al., 2017), our study engages in
examining human reasoning across a range of simulation costs
(Schwartz & Black, 1999; J. Kubricht et al., 2016; Davis et al.,
2017). Inspired by previous pouring tasks in intuitive physics
(Schwartz & Black, 1999; J. Kubricht et al., 2016; Guevara
et al., 2017; Lopez-Guevara et al., 2020), we build a pouring
marble task with more diverse physical properties and com-
plexities. In this task, human participants are asked to judge
the tilt angle needed to pour marbles from cups under various
setups (see Fig. 1A).

We conducted four steps of experiment to validate the above
hypotheses sequentially. The first step examines whether there
is a pattern switch regarding human judgment. A finding of
two distinct error patterns (i.e. overestimation and underesti-
mation) supports the existence of two predominant strategies
that vary under different simulation times. The second step
aims to test our hypothesis on whether the IPE model can
account for human judgments in simpler scenarios. The results
show that it aligns well with human judgments and exhibits
the same overestimation when the actual pouring angle is

small. However, it fails to account for humans’ underestima-
tion as the actual pouring angle exceeds a certain boundary
(see Fig. 1C). Given that the pouring rate remains consistent,
we hypothesize longer simulation time leads to increased cost
of physical unfolding, triggering the transition to another cog-
nitive strategy. Thus, we validate our second hypothesis by
exploring an alternative heuristic approach in the third step.
We developed a linear heuristic model trained on ground-truth
data and found that, although less effective than IPE at smaller
angles, the model accurately captures the underestimation pat-
tern when the pouring angle exceeds a certain boundary. These
results support our hypothesis of a cognitive shift to a heuristic
strategy. To test our third hypothesis, in the fourth step, we
explore whether a novel framework, Simulation-Heuristics
Model (SHM), that combines these two models and toggles
based on simulation cost, can explain human judgments across
all complexity levels (see Fig. 1B). The results show that
SHM aligns more closely with human behavior across diverse
scenarios and metrics, enhancing our understanding of intu-
itive physical reasoning and highlighting the adaptability and
versatility of human cognition.

Models
Mental simulation
Recent work explains human intuitive physics understanding
by assuming an approximate simulation engine in the human
mind (P. W. Battaglia et al., 2013; Lake et al., 2017; J. Kubricht
et al., 2016). This engine serves to simulate the future phys-
ical unfolding, akin to a computational physics engine but
incorporates noise into the physical properties of objects.

Following this approach, our model utilizes an IPE that runs



noisy simulations as in P. W. Battaglia et al. (2013). The model
takes an initial physical scene S0 and external forces f0:T´1

to derive the judgment J . This process involves predicting the
intermediate states S1:T over a time span T :

P pJ |S0, f0:T´1q “

ż

S1:T

P pJ |S1:T qP pS1:T |S0, f0:T´1qdS1:T ,

(1)
where S1:T represents the sequence of all physical states from
time steps 1 through T, and the integral averages over all
possible trajectories of these states. Each state evolves as
St`1 “ϕpSt `ϵ, ftq with noise ϵ„N p0, σ2q, and ϕp¨q repre-
senting deterministic physical dynamics. We simplify the map-
ping from the initial state to the final judgment as MpS0; f, ϵq.

In our implementation using the flexible physics engine
Pymunk, the IPE utilizes all physical variables to simulate
future dynamics in a 2D scenario with added Gaussian noise
N p0, σ2q to each marble’s position horizontally and vertically
during every simulation step. When this noise causes objects
to overlap, Pymunk’s collision resolution automatically repels
them based on physical constraints. The noise level σ2 is var-
ied from 0.1 to 1 to observe its impact on the simulation results.
Inspired by classical findings by Shepard & Metzler (1971),
who demonstrated that mental rotation time is proportional to
rotation angle, suggesting a constant angular velocity in men-
tal simulation. We assume a simulation model with constant
rotational speed and optimize it through iterative parameter
search to minimize the RMSE between model predictions and
human judgments across a calibration subset of trials. After
optimization, the simulation time becomes proportional to the
rotation angle. In the following context, we will use rotation
angles to represent simulation time.

We perform 30 noisy IPE simulations per trial. During each
simulation, an automatic detection system is integrated to
identify the moment when the marbles fall out, which serves
as the ground truth. The final pouring angle is determined from
the average of the 30 results. This setup allows us to mimic
the variability and uncertainty in human cognition, as outlined
in prior studies (K. A. Smith & Vul, 2013), and to explore how
these factors influence judgment in physical tasks.

Heuristic model
Prior studies often employ predefined heuristics to elucidate
human biases (Schwartz & Black, 1999; Kozhevnikov &
Hegarty, 2001; K. A. Smith et al., 2017) or fit heuristic models
on human data to evaluate the influence of physical attributes
(Zhou et al., 2023). While these approaches offer insights for
specific tasks, a systematic methodology for learning heuris-
tics in complex scenarios is lacking.

Our heuristic model is designed to learn from a subset of
physical attributes, fitting ground-truth data through a direct
mapping g from the initial scene S0 to the final judgment J ,
bypassing the intermediate states. This model is advantageous
as it approximates humans’ real-world physics understanding
by a limited set of attributes, and circumvents the need for
computationally heavy physics simulation. In particular, we

employ a linear model with learnable parameters:

J “ gpS1
0 , ..., S

n
0 q “

n
ÿ

i“1

ωiS
i
0 `b, (2)

where tSi
0u are different physical variables in S0 and we set

n“ 4 in our study. Specifically, the model considers the fol-
lowing four variables: object size, filling height, object shape,
and cup shape. Instead of directly predicting the pouring angle,
the model predicts the difference between the actual pouring
angle and a reference 90-degree angle. This design choice was
made based on preliminary observation from a familiarization
experiment that an H-shape cup containing little marbles al-
most always pours out at 90 degrees. The model is optimized
using the mean squared error. Future exploration may consider
nonlinear heuristic models using symbolic regression (Xu et
al., 2021).

Dual-process model
Building on the notion that human cognition might employ
multiple systems (Kahneman, 2011), we introduce a dual-
process model in the context of intuitive physics, termed SHM.
This model hypothesizes that humans alternate between two
strategies, mental simulation and heuristic reasoning, based
on the simulation cost, which is approximated by the simula-
tion time. The simulation strategy parallels Kahneman’s "slow
thinking" (System 2): a deliberate, resource-intensive process,
while the heuristic approach functions as "fast thinking" (Sys-
tem 1): an efficient but potentially less accurate mechanism.
Specifically, for simulation time below a critical boundary
θ, IPE is favored, whereas, beyond θ, a heuristic strategy is
triggered. This adaptive approach is formalized as:

#

J “EϵrMpS0; ϵqs, if T ď θ,

J “
řn

i“1 ωiS
i
0 `b, if T ą θ

. (3)

where we drop the dependency on f , which remains constant
across the same set of experiments. We employ a grid search
method to optimize both θ for the strategic transition and
the noise parameters σ for the IPE, in addition to a group of
heuristic parameters ω derived from linear regression.

Experiment
Participants
A total of 43 college students (55% male, 45% female; mean
age = 21.77 ± 4.45) completed in-person experiments for
course credit or monetary compensation. One participant was
excluded due to little response variation. The study received
IRB approval from the Committee for Ethics and the Protec-
tion of Human and Animal Welfare at the local institution.

Stimuli
Stimuli were generated using Pymunk in various configura-
tions, encompassing three cup shapes (H-shape, A-shape, and
V-shape), three object shapes (circle, triangle, and trapezoid),
three object sizes (large, medium, and small), and two filling



heights (half and full), totaling up to 54 different conditions.
These stimuli were then rendered using Pygame.

Marbles were randomly placed inside cups, with layouts
adjusted by Pymunk’s physics engine. Three random layouts
were generated per condition. Stimuli were selected when
marbles reached stability. Marbles had no friction or elasticity,
equal mass, and random grayscale colors to eliminate material
property assumptions.

Pouring angles were determined through simulations of
slow cup rotations. The critical angle was measured when a
marble’s mass center aligned with the cup’s top-left corner,
using 120 FPS calculations with automatic fall detection. Tilt
angles were referenced to verify pouring angles. Example
stimuli appear in Fig. 2a.

Procedures
A within-subjects design was implemented, where each partic-
ipant completed all 54 conditions. Stimuli were navigated in a
counter-balanced order with randomly selected layouts, and
the experiment lasted approximately 30 minutes.

Familiarization Following informed consent, partici-
pants underwent an instruction phase and familiarization ses-
sion featuring pouring demonstrations with two small marbles,
addressing marble properties, tilt angles, and pour initiation cri-
teria. Comprehension was assessed through quizzes on empty
cup angles and marble pour timing before proceeding to the
experimental phase.
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Figure 2: Visualizations of stimuli and error analysis. (a) Example
stimuli. The top (red), middle (black), and bottom (blue) rows depict
two scenarios each, with pouring angles that are smaller, close to, and
larger than the established simulation bound, respectively. (b) The
mean absolute error between model and human results (with SEM).
The IPE model exhibits a larger absolute error when the simulation
time exceeds the boundary. Conversely, the heuristic model shows
contrary results, indicating its effectiveness in these scenarios.

Experiment Participants were required to complete 54 tri-
als consecutively. In each trial, a static image of a non-rotated
cup from various setups was presented. The tilt angle neces-
sary for the cup to begin pouring out marbles was estimated
by the participants using a slider bar with a range of 0 to
135 degrees. To reduce potential biases from inaccurate angle
perception, a dial marked with angle measurements was pro-
vided in each trial. Demographic information along with the
responses for the pouring angles across all 54 trials, including

the total duration, were recorded for subsequent analysis.

Results

Our analysis follows four sequential steps to validate our hy-
pothesis: (1) examination of participants’ error patterns in-
dicating strategic shifts, (2) evaluation of IPE’s capacity to
explain human judgment, (3) development of a complementary
heuristic model incorporating physical attributes, and (4) inte-
gration of simulation and heuristic approaches into a hybrid
model to comprehensively explain human judgments.

A switching in error patterns

Human results show overestimation and underestimation of
the pouring angle compared with the ground truth. These two
error patterns may indicate different strategies of physical
reasoning. To examine whether there is a switching mecha-
nism between the two patterns among those conditions, we
employed symbolic regression to automatically identify an
explainable factor and its corresponding switching point that
best distinguishes between the two patterns. We considered
all experimental design factors, including cup shape, object
shape, object size, and filling height, along with the object
number and simulated pouring angle. Our analysis shows that
the simulated pouring angle effectively differentiates between
the reversal patterns observed in human participants’ estima-
tions of tilt angles for pouring (see Fig. 1C). We identified
the optimal boundary for distinguishing these patterns to be
65 degrees by searching from 20 to 120 with an interval of 1.
Initially, participants tended to overestimate these angles when
the simulated pouring angles were relatively small (mean dis-
crepancy = 7.76 ± 13.67). As the angle increases, this trend
shifts to consistent underestimation (mean discrepancy = -9.89
± 8.75). Given the consistent tilting speed, the observed pattern
switch as the pouring angle increases suggests a hypothesis
that the physical reasoning strategy may change when the
simulation time exceeds a certain resource boundary.

IPE fails to explain all trials

To validate our hypothesis, we first experiment with the IPE
model. Fitting human judgments in the overestimation phase
with IPE supports our hypothesis of the simulation strategy’s
dominance in the shorter time span. Note that as the angular
speed remains constant in our experiments, the simulation time
is proportional to the degree of angle. When the positional
noise and rotational speeds of the IPE model were optimized,
the results were closely aligned with human performance,
explaining the overestimation pattern effectively (r = .890).

However, once the pouring angle exceeded the 65-degree
boundary, IPE’s prediction error significantly increased (t(52)
= -3.354, p = .002; see Fig. 2b for absolute error compari-
son on the left). No parameter combination in the IPE model
could well explain the underestimation pattern, indicating the
existence of an alternative strategy other than IPE.



Table 1: Categories, coefficients, and p-values of physical variables
in the learned heuristic model. All physical variables except the
object shape show significant contributions to the outcomes.

Variable Category Coefficients p

Cup shape
H-shape

-11.528 0.000A-shape

V-shape

Object shape
Circle

1.577 0.073Triangle

Trapezoid

Object size
Small

7.029 0.000Medium

Large

Filling height
Half

-19.955 0.000
Full

Learned heuristic model complements IPE
To better explain the underestimation pattern in human behav-
ior, we devised a heuristic model incorporating key physical
attributes rooted in our experiments: filling height, cup shape,
object shape, and object size. This model effectively compen-
sated for the discrepancies unexplained by the IPE model. The
heuristic model performed well when the actual pouring angle
exceeded 65 degrees (r = .841), but its accuracy diminished
below this boundary (Mann-Whitney U test, p = .003; see
Fig. 2b for absolute error comparison on the right).

Further analysis of specific heuristics revealed that fill-
ing height, cup shape, and object size significantly influence
heuristic judgment (see Tab. 1, p = .000 for all three variables).
The model’s coefficients allowed a quantitative assessment
of these variables’ impact. Despite the simplicity and approx-
imate encoding, this linear heuristic model captured basic
physical intuition effectively. The findings align with our sec-
ond hypothesis, suggesting the adoption of heuristic strategies
when mental simulation reaches its boundary.

SHM explains human judgments on all conditions
Building upon our findings, we constructed the Simulation-
Heuristics Model (SHM), a dual-process model integrating
both simulation and heuristic strategies, to optimally predict
human performance across all trials. Instead of relying on
actual simulation time in humans, which is unavailable, we
instead based the transition criterion in SHM on IPE’s sim-
ulation time. A grid search identified the boundary of 68.2
degrees in simulation time and a dynamic positional noise of
0.2 as optimal for mirroring human judgments.

In predicting overall human performance, SHM surpassed
three baseline models: the deterministic physics model, IPE,
and the purely heuristic model. SHM exhibited the highest
correlation and lowest RMSE (r = .834, RMSE = 10.002), as
shown in Fig. 3. Although IPE was correlated with human
judgments (r = .772), it showed high error in making human-
like predictions (RMSE = 17.457). On the contrary, the heuris-
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Figure 3: Comparison between SHM and other baseline models.
The correlation and RMSE between model predictions and human
predictions across all 54 conditions are compared. Among the four
models evaluated, SHM demonstrates the highest correlation and the
lowest RMSE, indicating its superior predictive accuracy.

tic model could predict human judgments with smaller RMSE
but failed to better explain the variance (r = .733, RMSE =
12.085).

The fitted SHM model exhibited consistent predictive per-
formance across diverse conditions (e.g., different cup shapes,
object shapes, sizes, and filling heights). It consistently showed
the lowest RMSE, except in specific scenarios where the
heuristic model was parallel (Fig. 4). The model explained
maximum variance in almost all cases, with comparable per-
formance to IPE in scenarios involving large or trapezoidal
marbles. Notably, in situations where IPE minimally corre-
lated with human judgments (e.g., A-shaped cups, r = .461),
SHM maintained effectiveness (A-shaped cups, r = .647). It
also significantly improved correlation in scenarios poorly ad-
dressed by the heuristic model (full filling height, r improved
to .673 from .377). These results highlight SHM’s capabil-
ity to synergize the strengths of both IPE and the heuristic
model, enabling robust predictions across diverse scenarios.
Consequently, the SHM model, with its transition mechanism
based on simulation time, aligns with our third hypothesis
and effectively accounts for a wide range of conditions and
metrics.

Discussion
Limitations While our study proposes a method to distin-

guish between cognitive strategies, people can employ mul-
tiple strategies within a single trial. Furthermore, existing
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Figure 4: Comparison of four models’ RMSE on different conditions. RMSE is calculated as the root mean square error between the
model’s predicted pouring angle and the human judgments. The bottom right figure represents the performance across all 54 trials. A dashed
line is included to indicate the RMSE of the SHM, showing a clear advantage when compared with other models.

research (Siegler, 1976; Marcus & Davis, 2013; Davis & Mar-
cus, 2016; Ludwin-Peery et al., 2021) in intuitive physics
indicates that humans’ results can be incompatible with those
from mental simulation models, even for simple tasks like
predicting the tipping direction of the balanced beams. This
suggests that factors other than the mental cost triggered the
heuristic strategy, and a more nuanced modeling is needed
to capture the variability in human judgment. We note that
our model parameters were fitted using the complete dataset
rather than through cross-validation on separate subsets of
conditions. Therefore, our claims focus on the model’s ability
to explain human behavior consistently across diverse physical
scenarios rather than its ability to predict novel conditions.

Future work Future research could investigate the mecha-
nisms behind strategy selection and the generalizability of our
findings across various physical scenarios. Key questions in-
clude how humans choose an initial strategy and estimate sim-
ulation costs. Eye-tracking or verbal protocol studies might re-
veal whether people start with simulation and abandon it when
costly, or make preemptive decisions based on scene complex-
ity. Although our use of pouring angles is task-specific, the
underlying cost-based strategy-switching mechanism likely
applies more broadly.

Additionally, the dual-process model employed by humans
may utilize different physical variables as heuristics across
scenarios. For instance, tower height might serve as a heuristic
in block collapse estimation, while object distribution could be

relevant for predicting group motion. Other factors influencing
strategy selection might include task complexity, scenario fa-
miliarity, and prior experience. Despite this variance in heuris-
tic strategies, investigating whether our learning approach
maintains effectiveness across contexts would be valuable for
developing a deeper understanding of physical reasoning.

Conclusion
In this work, we design a pouring-marble task to study the
computational mechanism in intuitive physics. The sequential
experiments underscore that while the IPE effectively predicts
human judgments in scenarios with short simulation times, its
efficacy diminishes as these times extend. This limitation of
IPE paves the way for the implementation of a heuristic ap-
proach that shows greater accuracy in scenarios necessitating
longer and more complex simulations. The introduction of the
SHM model, which seamlessly integrates these two cognitive
strategies based on the simulation cost, not only aligns more
closely with human behavior but also enhances the model’s
consistent predictive capabilities across varied conditions. By
bridging the gap between mental simulations and heuristic
approaches, the SHM model offers a robust framework to cap-
ture the complexity and adaptability of human cognition in
intuitive physics. This model serves as a pivotal step in ex-
ploring computational methods that closely mimic human-like
reasoning, providing insights into the cognitive mechanisms
that govern our interactions with the physical world.
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