
A 🔍 Conan Playground

🔍 Conan’s playground is a computationally efficient 2D open-world environment with diverse
items and rich tasks. The most distinctive feature of🔍 Conan’s playground over the original Crafter
environment is that agents in🔍 Conan leave diverse traces when interacting with the environment.
These traces serve as the foundation for abductive reasoning; the detective has to effectively connect
the traces to figure out what the vandal has done.

A.1 Items and Traces

Land Based on Crafter, there are three types of terrains that agents can walk on: sand, grass, and
path. Sand and grass are soft surfaces where agents leave directional footprints after walking on
them (see Fig. A1 first 2 rows in Columns 2 and 3 for examples). If a grid is left with more than one
footprint, the footprints will become melded (Fig. A1 Column 4 in first 2 rows). Agents’ actions will
also leave traces on the terrain, e.g., water on the ground (Fig. A1 Column 5 first 2 rows). If an agent
gets injured, blood will be shed on the ground (Fig. A1 Column 6 first 2 rows).

Creatures There are four creatures in the playground: plant, cow, zombie and skeleton. plant
grows from sapling to ripe plant. Cow randomly wander on the ground, whereas zombie and skeleton
(monsters in general) will target agents in sight: zombie chases agents and skeleton shoots arrow at
agents. Agents can fight with creatures and kill them. These actions will leave monster bodies on the
ground.

Tools Agents can make tools on the table. There are 7 tools in total: bucket, wood_sword,
wood_pickaxe, stone_sword, stone_pickaxe, iron_sword, and iron_pickaxe. These tools can be made
using different materials and used for certain tasks. Both swords and pickaxes can be used to fight
with creatures, but only pickaxes can be used in mining. Buckets can be used to collect water and
lava.

Actions 🔍 Conan’s playground enables agents to interact with objects, non-playable characters,
and even other agents in the playground. Agents can cut tree to get apple and wood, as well as
collect sapling and grow plant (Fig. A1 Row 3). They can also mine with different tools to get stone,
coal, iron, and diamond. Using these materials, agents can make bed for sleep, furnace for keeping
monsters away and grilling food, table for making tools, etc. Of note, these items should be placed in
an empty grid to use and they can be destroyed by monsters.

A.2 Achievements and Tasks

There are 60 tasks and 39 achievements in 🔍 Conan’s playground. We list all achievements in
Tab. A1. Tasks are composed achievements. We select 60 nontrivial and meaningful tasks from all
compositions in🔍 Conan as the final task set.

Table A1: Achievements in🔍 Conan.
Type Achievements

Survive
drink_water eat_apple eat_beef eat_steak

sleep sleep_on_bed wake_up eat_grilled_apple
drink_water_from_bucket eat_plant

Collect
collect_wood collect_apple collect_water collect_stone
collect_iron collect_diamond collect_beef collect_coal
collect_water collect_lava collect_sapling collect_plant

Make

make_steak make_grilled_apple make_bucket make_fence
make_wood_sword make_wood_pickaxe make_stone_sword make_stone_pickaxe
make_iron_sword make_iron_pickaxe place_table place bed
place_furnace place_plant

Defeat defeat_cow defeat_zombie defeat_skeleton

A.3 Observation and Action

🔍 Conan offers both pixel representation and symbolic representation for training agents. For pixel
representation, the environment returns a 900 ˆ 900 RGB image each time step for the detective’s

A1

sand sand_left sand_up sand_unknown sand_water sand_blood

grass grass_left grass_up grass_unknown grass_water grass_blood

tree apple_tree tree_cut plant young_plant ripe_plant

cow dead_cow zombie dead_zombie skeleton dead_skeleton

stone stone_left iron iron_left diamond dia_left

bed bed_left furnace fur_left table table_left

apple beef steak bucket water_bkt lava_bkt

wood_sword wood_pickaxe stone_sword stone_pickaxe iron_sword iron_pickaxe

arrow_left fence bow player sleep_player dead_player

water path lava health drink energy
Figure A1: Items and related traces in🔍 Conan.

A2

9ˆ 9 local view. For symbolic representation, the environment returns a 9ˆ 9 tensor, with each entry
an index representing one of 50 grid types, covering materials, resources, objects, creatures, and etc.
The agent is always at the center of the observation.

🔍 Conan affords a larger action space. See Tab. A2 for a detailed list of actions.

Table A2: Actions in🔍 Conan.
Action Details

Noop Do nothing.
Move Left Move left if the grid is walkable.
Move Right Move right if the grid is walkable.
Move Up Move up if the grid is walkable.
Move Down Move down if the grid is walkable.
Do Collect materials or fight with monsters. Use tools if possible.
Sleep Sleep to restore energy. Sleep on bed can restore energy faster;
Place Stone Place a stone if the grid is not occupied. Should have a stone.
Place Table Place a table if the grid is not occupied. Should have a table.
Place Furnace Place a furnace if the grid is not occupied. Should have furnace.
Place Plant Place a plant if the grid is grass. Should have sapling.
Place Bed Place a bed if the grid is not occupied. Should have bed.
Make Wood Pickaxe Nearby table. Should have wood.
Make Stone Pickaxe Nearby table. Should have wood, stone.
Make Iron Pickaxe Nearby table, furnace. Should have wood, coal, iron.
Make Wood Sword Nearby table. Should have wood.
Make Stone Sword Nearby table. Should have wood, stone.
Make Iron Sword Nearby table, furnace. Should have wood, coal, iron.
Make Bucket Nearby table. Should have wood, stone.
Make Steak Nearby table, furnace. Should have beef.
Eat Apple Restore 2 health. Should have apple.
Eat Beef Restore 4 health. Should have beef.
Eat Steak Restore 6 health. Should have steak.
Collect Water Collect water to bucket. Should have empty bucket.
Collect Lava Collect lava to bucket. Should have empty bucket.
Drink Drink water. Drink water from water bucket if not near the water.

B 🔍 Conan Questions

B.1 Question Generation

Questions in🔍 Conan are generated based on vandal’s task-finishing process. To generate a question,
(1) we initialize a playground and put the vandal in it; (2) the vandal is randomly assigned a task;
(3) the vandal tries to finish the task with the help of the pre-build parser and planner, and generates
logs along the way; (4) a question is generated based on a certain part of the log. We randomly
select a template from the template pool and fill placeholders with related objects in it. The answer is
also parsed from the log. Other choices are sampled based on the question and the context to avoid
unrelated choices that can be easily excluded.

B.2 Question Templates

Tab. A3 lists all the templates we use for generating questions.

B.3 Dataset Statistics

See Tab. A4 and Tab. A5 for details.

C Explorer

The Explorer in the detective is an RL agent. The agent receives an observation of a r64, 64, 2s tensor.
This tensor combines the 9 ˆ 9 symbolic local view of the detective and a 64 ˆ 64 question mask.

A3

Table A3: Question templates in🔍 Conan. [] is the placeholder.
Type Templates

Intent

What was the vandal’s objective in these area? What was the vandal’s current intent?
What did the vandal do after this step? What did the vandal do before this step?
What did the vandal make on this table? Why did the vandal make this table?
What item did the vandal most likely craft using the table? Why did the vandal make the []?
What action did the [] perform immediately? What was the [] used for?
What did the vandal make on this furnace? Why did the vandal make this furnace?
What item did the vandal most likely craft using the furnace? Why was tree cut?
What was the intended use for the wood? How was the tree cut?
What was the purpose of mining []? Why was the [] mined?
What was the intended use for the []? How did the vandal defeat the []?
What did the vandal use to defeat the []? Why did the vandal defeat the []?

Goal What was the vandal’s final goal? What was this vandal trying to achieve?
What did the vandal want to achieve?

Survival

What was the vandal’s survival intent for doing []? why did the vandal collect/make []?
What was the vandal’s goal for survival currently? Did the vandal die? Why?
Why did the vandal die during the task? How did the vandal die?
What was the vandal trying to do when died? What can the vandal do to avoid death?
what helped keep the vandal away from hungry? what food did the vandal eat?

Table A4: Dataset split and choice distribution.
Category Train Test Val Choice A Choice B Choice C Choice D

Intent 71162 9152 8822 24.99% 25.20% 24.89% 24.93%
Goal 8000 1000 1000 24.89% 25.08% 24.87% 25.16%

Suvival 7365 1560 1596 25.13% 24.95% 24.95% 24.97%

Table A5: Task distribution.
Task get_drink defeat_cow get_apple make_stone_pickaxe place_bed place_furnace

Percentage 2.47 8.49 2.52 2.87 8.44 8.23

get_lava defeat_skeleton make_iron_sword get_coal get_beef get_diamond get_stone
2.72 8.7 2.64 2.42 2.7 2.39 2.67

make_bucket get_iron get_water make_iron_pickaxe make_bed make_steak make_wood_sword
3.11 2.44 2.2 2.95 2.71 2.81 2.53

defeat_zombie make_stone_sword place_table get_wood make_wood_pickaxe
7.8 2.65 8.24 2.67 2.63

The local view is zero-padded to 64 ˆ 64. This ensures the agent knows its relative position on the
map. Additionally, the mask is generated based on the question, with the area related to the question
unmasked. The mask serves as the goal of the exploration policy.

All the RL baselines are trained for 108 steps. See more details below. Unless specified otherwise,
parameters are set as default in Stable Baselines.

C.1 Model Details

DQN The DQN baseline is trained using a γ value of 0.98, a τ value of 1, a learning rate of 0.0001,
a buffer size of 107, and a batch size of 512. We leverage an MLP policy with two layers of 64
neurons each. The model is updated every 10 steps.

TRPO The TRPO baseline updates its policy with a special KL-divergence constraint on the
distance between the new and old policies. We also leverage an MLP policy for TRPO, where the
same multi-layer perceptron is used for both policy and value prediction.

RecurrentPPO The ReucrrentPPO baseline uses long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) as the recurrent policy. The LSTM layers’ weights are initialized with standard
Gaussian. We reset LSTM states at the end of the episode. The LSTMs for both the actor and the
critic have the same architecture, with two LSTM layers of 256 neurons each.

A4

C.2 Training Details

Explorers are firstly trained on long-horizon tasks as explained in the main text. These long-horizon
tasks include “get diamond,” “get lava,” “get water,” “make iron sword,” “make iron pickaxe” and
“eat steak.” These tasks can be further broken down into over 20 subtasks and have an average episode
length of more than 200 steps. We generate 10,000 unique scenes with traces given these tasks and
train explorers on them for 108 steps. Then the explores are fine-tuned on all tasks in🔍 Conan for
107 steps.

We also show the frame rate per second (FPS) for different RL baselines during training in Fig. A2. As
can be seen from the figure, DQN exhibits the highest training efficiency, reaching an FPS exceeding
3000. TRPO maintains a stable FPS of 2000. On the contrary, RecurrentPPO operates significantly
slower, requiring over 96 hours to complete training with 128 subproc environments, whereas TRPO
accomplishes the task in just 14 hours.

D VL Reasoning

0 2e7 4e7 6e7 8e7 1e8Step
0

1000

2000

3000

4000

5000

FP
S

TRPO-500
RecurrentPPO-500
DQN-500
TRPO-5000
RecurrentPPO-5000
DQN-5000

Figure A2: Frame rate per second (FPS) curves of sev-
eral RL explorers in training. Results show that DQN
and TRPO are significantly faster than RecurrentPPO.

In this section, we describe the experimental
details for the Vision-Language (VL) models
used in the paper.

D.1 Model Details

Vanilla-Trans For Vanilla-Trans, the
visual features together with the text
features are concatenated in the for-
mat of [frame_1, frame_2, ...,
frame_n, question, choice_1,
choice_2, ..., choice_4]. Visual
features, if from the symbolic observation,
are directly passed into the model. Otherwise,
we utilize CLIP’s pre-trained image encoder
(ViT-B/16) to extract features from pixel input. Text features are calculated using the text encoder of
CLIP. These input features are then passed through a 6-layer Transformer model with an MLP head
for classification.

FrozenBiLM We adopt the cross-modal FrozenBiLM for 🔍 Conan, drawing inspiration from
models used in Multiple-choice VideoQA benchmarks such as How2QA (Li et al., 2020) and
TVQA (Lei et al., 2018)1.🔍 Conan can be formulated as a multiple-choice VideoQA problem given
the fixed explorer. We concatenate all of the observation frames as the video input. The questions and
choices are converted into the following format: [“{question} Is it {choice_1}?,”
..., “{question} Is it {choice_4}?”]. We then evaluate the probabilities of the
model producing “Yes” and “No”. The visual features are processed in the same way as in Vanilla-
Trans and then forwarded for visual-text projection. We utilize BERT-Large and DeBERTa as our
frozen language backbones in this work; however, other general language models are applicable as
well.

Flamingo-Mini Our Flamingo-Mini baseline is based on an open-source implementation of the
Flamingo model2, as the original Flamingo model’s pre-trained weights are not accessible. Flamingo-
Mini is built upon OPT-125M and CLIP pre-trained ViT-L/14 model. We also formulate🔍 Conan as
a multiple-choice problem for Flamingo-Mini. The questions and choices are converted into the follow-
ing format: [“Question: {question} Answer: {choice_1},” ..., “Question:
{question} Answer: {choice_4}”]. Each question-choice pair is fed into the model and
then a binary classifier head is used on Flamingo’s last layer output to predict the final answer.

1https://github.com/antoyang/FrozenBiLM
2https://github.com/lucidrains/flamingo-pytorch

A5

https://github.com/antoyang/FrozenBiLM
https://github.com/lucidrains/flamingo-pytorch

D.2 Training Details

Vanilla-Trans was trained for 100 epochs, with a batch size of 128. FrozenBiLM models were
trained for 50 epochs, with a masking probability (for the MLM objective) of 0.15, a batch size of
32, a learning rate of 3 ˆ 10´4, a gradient clipping max norm of 0.1, and Adam as the optimizer
(β1 “ 0.9, β2 “ 0.95, ϵ “ 1ˆ10´8). Flamingo-Mini was trained for 100 epochs, with a learning rate
of 5ˆ 10´5, a batch size of 8, and also Adam as the optimizer (β1 “ 0.9, β2 “ 0.999, ϵ “ 1ˆ 10´8).

E Additional Experiments

E.1 Negative Control Baselines

We compare our VL reasoning results on the trained explorers with those on empty visual inputs as a
negative control baseline. The results are shown in Tab. A6.

Table A6: VL Reasoning models’ performance on explorers compared with empty visual inputs.
Vanilla-Trans F-BiLM-BERT F-BiLM-DeBERTa Flamingo-mini

Empty visual inputs 26.4 25.5 25.9 22.9

TRPO explorer 25.0 44.4 43.1 43.3

Ideal explorer 78.4 59.5 71.8 47.8

The results show that using empty visual inputs yields random performance across all settings. Besides,
it also shows that the training QA pairs are unbiased. The TRPO explorer achieves higher performance,
which suggests that the exploration strategy learned by TRPO helps gather some informative evidence
for the reasoning process. The Ideal explorer is an oracle-like exploration policy that has access to
perfect trace evidence and temporal information. It provides the most comprehensive information
about the environment. This highlights the importance of effective exploration in improving reasoning
performance. However, it does not mean that reasoning is less important, as even with the Ideal
explorer, the model still could not achieve satisfactory performance. Based on all results, collecting
informative evidence seems to be more important in the overall objective.

F Abduction from Deduction (AfD)

As mentioned in Sec. 4.4, we adopt a data-driven strategy to learn a model of P pg | Sq and simulta-
neously answer the questions. To be more specific, we train the detective agent self-supervisedly. The
detective is randomly assigned with one of all possible tasks. It then finishes the task by following
the action policy πp¨q. Note that we assume the detective’s πp¨q is the same as the vandal’s in order
to best implement the idea of AfD. Based on the task execution process, questions are generated.
Since our ultimate goal is to have our models answer🔍 Conan’s questions, we do not explicitly
construct P pg | Sq, but rather consider the question-answer process as the g. We then train P pg | Sq,
where S is the detective’s observation during the task execution, and the label can be derived from
the assigned tasks together with the πp¨q.

Besides P pg | Sq, we still need to learn a model of P pS | Oq, which, intuitively, can be understood
as inferring the true state of the environment from partial observation. In our experiment, we tried two
ways to model P pS | Oq. One approach is to directly train a model using multi-frame observations
to predict the states. We employed a UNet (Ronneberger et al., 2015) and a multi-layer CNN as the
network. However, this method did not work effectively. Reasoning based on the reconstructed states
only achieved performance at a random level. The second approach, which was finally used to report
performance, aligned the hidden feature spaces from true states and observations. When training
P pg | Sq, we added a head before the VL models, converting the input S into a 4096-dimensional
vector. Then we trained a head on O with the same structure, minimizing the difference between
features from O and features from S.

G 🔍 Conan Task Demo

A6

Figure A3: The
task struc-
ture of “get
diamond”.

To better illustrate the core components in 🔍 Conan, We take the playground
shown in Fig. 1 as an example. In this scenario, the assigned task is “get diamond”
(Fig. A3 shows the task dependency). As shown in Fig. A4, once the vandal
completes the task, it leaves behind traces in the playground. The vandal ends
at the bottom of the figure. The detective then enters the playground, starting at
the beginning of the traces. In this case, traces encompass footprints and remnants
left after certain actions. Note that footprints cannot be left on sand or stone, and
different footprints may overlap. The vandal will collect objects crafted on a table,
making them invisible.

Let’s suppose the detective’s exploration begins by following footprints (note the
context window size is 9ˆ9).

Firstly we can see some cut trees. As the footprints are not seriously overlapped
and mostly one-directional, we can deduce the vandal did not return. After seeing
the tool-making table, with the only resources being wood, we could say that the
vandal could only make wooden tools, not stone swords or iron pickaxes, further
restricting possible actions the vandal took.

Note that this is already critical reasoning in🔍 Conan.

Moving on, we note that footprints become missing on the sand surface. However,
we note broken stones and coals. Therefore, the wooden tool to break stones and
coals shall be a wooden pickaxe. So the agent should have made a wooden pickaxe
on the table earlier. Despite the fact that the tool has been collected, we could still
figure that out.

Following the reemerged footprints, we note blood and a zombie body on the ground, suggesting the
vandal should have had a fight.

Searching on, we find the broken diamond. As an iron pickaxe is the only tool to collect diamonds.
The vandal must have built an iron pickaxe with iron and coal in the furnace. With no other footprints
around, we can safely conclude our search.

Figure A4: A demostration of core components in 🔍 Conan. We show how a detective can do reasoning
based on the task structure and traces left in the playground. Zoom in for more details.

A7

	Conan Playground
	Items and Traces
	Achievements and Tasks
	Observation and Action

	Conan Questions
	Question Generation
	Question Templates
	Dataset Statistics

	Explorer
	Model Details
	Training Details

	VL Reasoning
	Model Details
	Training Details

	Additional Experiments
	Negative Control Baselines

	Abduction from Deduction (AfD)
	Conan Task Demo

