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Abstract

Recent advances in vision-language learning have achieved notable success on
complete-information question-answering datasets through the integration of exten-
sive world knowledge. Yet, most models operate passively, responding to questions
based on pre-stored knowledge. In stark contrast, humans possess the ability to
actively explore, accumulate, and reason using both newfound and existing in-
formation to tackle incomplete-information questions. In response to this gap,
we introduce 🔍 Conan, an interactive open-world environment devised for the
assessment of active reasoning.🔍 Conan facilitates active exploration and pro-
motes multi-round abductive inference, reminiscent of rich, open-world settings
like Minecraft. Diverging from previous works that lean primarily on single-round
deduction via instruction following,🔍 Conan compels agents to actively interact
with their surroundings, amalgamating new evidence with prior knowledge to eluci-
date events from incomplete observations. Our analysis on🔍 Conan underscores
the shortcomings of contemporary state-of-the-art models in active exploration and
understanding complex scenarios. Additionally, we explore Abduction from De-
duction, where agents harness Bayesian rules to recast the challenge of abduction
as a deductive process. Through 🔍 Conan, we aim to galvanize advancements
in active reasoning and set the stage for the next generation of AI agents adept at
dynamically engaging in environments.

1 Introduction

Active interaction with the environment is fundamental to human understanding of the world around
us. Both neural and behavioral studies indicate that through active engagement with their surroundings,
humans garner critical insights and foster a profound understanding of complex phenomena (Goodale
and Milner, 1992; Rizzolatti et al., 1997; Rieber, 1996). When confronted with partial or ambiguous
data, our innate response is to seek supplementary evidence, hypothesize, and put forth possible
explanations, sometimes even reevaluating initial assumptions (Yuan et al., 2022). This iterative
process persists until a satisfactory resolution emerges.

The process of formulating theories based on observations and prior knowledge is classically termed
as abductive reasoning or simply, abduction (Peirce, 1965; Douven, 2021). A topic of enduring
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Figure 1: An example of 🔍 Conan, an open-world environment for active reasoning. (a) 🔍 Conan
initialization. A vandal is randomly assigned a task from the task space while keeping alive. A probabilistic
parser, utilizing a knowledge graph, selects a sequence of subgoals to fulfill the main objective. This decision is
then conveyed to a planner which, in turn, invokes heuristic policies to execute atomic actions. Some of these
actions leave discernible traces within the environment. (b)🔍 Conan playground with traces. (c)🔍 Conan
questions. Here, a detective is spawned and is tasked with answering queries. It does so by actively exploring the
environment, connecting keyframes, and reaching conclusions.

interest among psychologists, abduction is perceived as a cornerstone of human cognitive processes.
Historical and contemporary studies have delved into its cognitive mechanisms (Josephson and
Josephson, 1996; Thagard, 1988; Peirce, 1965), practical applications (Hobbs et al., 1993; Shank,
1998), and ties to scientific thinking and decision-making (Hanson, 1965; Gigerenzer and Gaissmaier,
2011; Zhang et al., 2021a). With growing momentum in the machine learning sphere, recent years
have witnessed the advent of dedicated benchmarks and models accentuating abductive reasoning
(Bhagavatula et al., 2019; Kayser et al., 2021; Hessel et al., 2022; Liang et al., 2022).

However, the bulk of prior work in this domain relies heavily on a single-round, passive question-
answering paradigm that offers complete information. This setup often sees an agent simply respond-
ing to queries, leveraging vast pre-trained knowledge, as evidenced by the latest strides in language
and vision-language learning. Recent progress in the field has notably already improved performance
in such complete-information information question-answering. Contrarily, humans demonstrate a far
more nuanced approach when navigating abductive scenarios with incomplete data (Edmonds et al.,
2018). We actively engage, explore, gather, and reason, drawing from both new information and
prior knowledge. Our iterative approach allows for continuous refinement based on newly acquired
evidence (Oaksford and Chater, 1994; Bramley et al., 2017; Edmonds et al., 2019, 2020).

To capture the dynamic and exploratory essence of abductive reasoning—termed herein as active
reasoning—we present🔍 Conan, a new open-world environment tailored for abductive reasoning.
Standing head and shoulders above traditional single-round passive reasoning benchmarks,🔍 Conan
boasts an open-world arena, urging agents to actively probe surroundings and engage in multi-round
abductive inferences, all while leveraging in-situ collected evidence alongside pre-existing knowledge.

At its core, 🔍 Conan is conceived as a detective game, transmuted into a question-answering
challenge. Here, the detective is tasked with a query and an “incident scene” riddled with traces left by
a vandal. Given the initial paucity of conclusive information, the detective must embark on an in-depth
exploration of the scene. As the inquiry progresses, the detective has the opportunity to actively scout
its environment, continually reshaping and honing its hypotheses, especially when new revelations
potentially contradict the prior hypothesis. Furthermore, we meticulously craft questions within
🔍 Conan to span various levels of abstraction, from localized intentions (Intent) to overarching
objectives (Goal) and survival states (Survival).

To probe the proficiency of active reasoning, we evaluate state-of-the-art Reinforcement Learning (RL)
and multimodal question-answering models on🔍 Conan. Our observations highlight an intriguing
dichotomy: while these cutting-edge models exhibit prowess in addressing low-level, short-term
tasks, they struggle with multi-round environmental interactions and high-level abductive reasoning.
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A plausible root of this challenge could be the absence of structurally represented knowledge.
Predicated predominantly on associative training, these agents are versed in correlating traces with
responses without genuinely internalizing holistic world models. In sharp contrast, humans seamlessly
navigate abductive reasoning by forecasting potential trajectories leading to a perceived outcome. This
intricate dance gradually transmutes from abductive to deductive reasoning, where humans harness
their innate understanding of causality to deduce and mirror observed patterns. In our pursuit to
mirror this quintessential human trait, we integrate Abduction from Deduction (AfD) into🔍 Conan
via a Bayesian approach. Experimental results underscore the efficacy of AfD, indicating a substantial
avenue for bolstering agent adeptness in🔍 Conan.

To sum up, our work makes the following three contributions:

• We usher in the novel domain of active reasoning, underscoring the indispensable roles of active
exploration and iterative inference in abductive reasoning. This paradigm shift transforms traditional
single-round passive question-answering paradigms into a more immersive format, compelling
agents to actively engage with the environment to procure pivotal evidence.

• We introduce🔍 Conan, a new environment tailored to evaluate the abductive reasoning ability of
current machine learning models within dynamic settings.🔍 Conan surpasses its predecessors
that hinge on step-by-step deductive reasoning, revealing the limitations of present-day models.

• We formulate a new learning method for abduction, AfD, grounded in Bayesian principles. This
framework elegantly reformulates abduction into deduction, proving instrumental in navigating the
complex active reasoning challenges posed by🔍 Conan.

2 Related Work

Machine Abductive Reasoning Abductive reasoning, foundational to human cognition, is crucial
for scientific exploration, decision-making, and problem-solving (Peirce, 1965; Magnani, 2011). In
the Artificial Intelligence (AI) landscape, there is a rich history of efforts to equip machines with this
ability, where they use prior knowledge and sparse observations to hypothesize amidst uncertainty
(Josephson and Josephson, 1996; Xu et al., 2023). Key developments span logic-based abduction
(Kakas et al., 1992; Poole, 1993) and hybrid neural-symbolic methods (Rocktäschel and Riedel,
2017; Zhang et al., 2021b; Li et al., 2022, 2023). With computational progress, Large Language
Models (LLMs) have effectively addressed several challenges through text generation, exhibiting
outstanding performance (Brown et al., 2020; OpenAI, 2023; Thoppilan et al., 2022). Modern research
usually frames abductive reasoning within natural language understanding (Bhagavatula et al., 2019)
or multimodal vision-language integration (Hessel et al., 2022; Liang et al., 2022). However, there is
still a notable gap: many benchmarks lean heavily on deduction, sidelining abduction’s interactive
essence. Our work addresses this gap, emphasizing the core of active reasoning in abductive contexts.

Embodied Question Answering Embodied question answering enhances traditional Visual Ques-
tion Answering (VQA) by placing agents in interactive environments (Johnson et al., 2017; Das
et al., 2018; Gordon et al., 2018; Yu et al., 2019). In 🔍 Conan, agents actively explore to gather
data, preparing them to solve abductive questions based on partial information. Unlike standard
embodied question-answering frameworks (Das et al., 2018; Gordon et al., 2018; Yu et al., 2019),
where questions become simple instructions for agents, 🔍 Conan introduces complexity: (i) its
questions, rooted in high-level intent and goals, resist simple decomposition into a series of actions;
(ii) agents in 🔍 Conan act as detectives, constantly hypothesizing from observations and prior
knowledge, and iterating their strategies in light of new data. For a comprehensive comparison of
🔍 Conan with other benchmarks, see Tab. 1.

3 The🔍 Conan Environment

🔍 Conan is crafted as an interactive question-answering environment aimed at evaluating a ma-
chine’s active abductive reasoning capacity, as depicted in Fig. 1. Building on the foundation of the
Crafter (Hafner, 2021),🔍 Conan evolves into a detective game featuring two agents: the vandal
and the detective. The gameplay kickstarts with the vandal undertaking a randomly designated task,
leaving behind traces for the detective to unravel. Subsequently, given these traces, pertinent queries
are generated. Finally, the detective is spawned in the environment, tasked with navigating these
traces and actively probing the environment, all to derive answers through abductive reasoning.
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Table 1: Comparison between🔍 Conan and related visual reasoning benchmarks.🔍 Conan is unique for
its active reasoning and interactive multi-round setting on abductive reasoning tasks.

Benchmark Format Multimodal Interactive Multi-round Abductive

CLEVR (Johnson et al., 2017) image ✓ ✗ ✗ ✗
IQA (Gordon et al., 2018) embodied ✓ ✓ ✗ ✗

EmbodiedQA (Das et al., 2018) embodied ✓ ✓ ✗ ✗
ART (Bhagavatula et al., 2019) language ✗ ✗ ✗ ✓

VAR (Liang et al., 2022) video ✓ ✗ ✗ ✓
Sherlock (Hessel et al., 2022) image ✓ ✗ ✗ ✓

🔍 Conan (Ours) open-world ✓ ✓ ✓ ✓

3.1 Basic Components

Collect

Make

Defeat

Survive

Figure 2: Part of the task dependency graph. Starting
from the root note, any path forms a multi-step task for
an agent to interact with the environment.

Playground Originating from the Crafter
playground,🔍 Conan operates within a 64ˆ64
grid matrix. Agents navigate this space with a lo-
calized 9ˆ 9 grid field of view centered on their
current position. Once the detective is created
in the environment, all traces left behind by the
vandal persist, serving as clues for the detective
to unravel. While pivotal studies (Johnson et al.,
2016; Fan et al., 2022; Cai et al., 2023; Wang
et al., 2023) address perception in 3D Minecraft
settings using foundational models, our empha-
sis is on honing active abductive reasoning. To
this end, we transition from a 3D visual percep-
tion to a 2D plane, ensuring a harmonious blend
of reduced visual complexity and retaining rich
interactivity (Xie et al., 2021).

Items and Actions 🔍 Conan offers an ex-
tensive assortment of interactive items: food,
materials, mobs, and tools, each tied to specific
actions, as illustrated in Fig. 2. It furnishes 26
unique actions to foster agent-environment en-
gagement. Certain actions leave traces, and together, the items and their mechanics provide a rich
set of affordances for agents in the playground. This knowledge about item operations and traces
aids the detective in comprehending the incident scene. Advancing from its predecessor, the original
Crafter,🔍 Conan now boasts over 30 achievements, a significant rise of over 50%. It features 32
distinct traces covering all agent actions such as crafting, collecting, defeating, eating, drinking, and
incurring injuries. This enhancement enables the design of 60 varied abductive reasoning tasks within
the scene. For an in-depth overview of the playground, refer to Appx. A.

Vandal Each🔍 Conan map starts with the initialization of a vandal. This agent is driven by two
primary aims: executing a specific task and preserving its existence within the environment. It is
noteworthy that external threats might terminate the vandal prematurely. Traces left in the aftermath
of the vandal’s activities form the question foundation for the detective, with every trace potentially
birthing several questions. For a detailed overview, see Sec. 3.2. We model the vandal as optimal:
when given a random task and the full map, it strategically delineates a sequence of subgoals based
on the task dependency graph, all while ensuring its survival. In scenarios with multiple viable paths
to an objective, uniform sampling comes into play. This sampling, supported by a probabilistic parser,
presents varied strategies for task completion. Hence, the detective must delve deeper to distinguish
the actual sequence of events from possible decoys. The execution of the vandal’s individual actions,
as per the planned subgoal sequence, is steered by a collection of pre-established policies.

Detective After generating questions from a given trace, a detective is spawned to answer them.
Traces left by the vandal span multiple steps and are only partially observable within the detective’s
9 ˆ 9 grid field of view. This requires the detective to actively interact with the environment and
gather evidence to answer the questions.
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Though both detective and vandal share the same action space, the detective boasts a unique capability.
It not only navigates and interacts like the vandal, but can also generate its own traces during
its investigation. These overlaid traces from the detective enhance the environment’s depth and
complexity. This setup pushes the agent to actively derive conclusions from its dynamic interactions.
Importantly, the detective is invulnerable; its focus lies squarely on problem-solving, eliminating
concerns about survival or evasion. This design emphasizes active exploration and reasoning, ensuring
🔍 Conan’s primary goal remains addressing complex reasoning tasks and answering visual scene-
related questions.

3.2 Questions and Choices

🔍 Conan is designed to assess the abductive reasoning capability of machine models through a
diverse set of questions varying in difficulty and abstraction. These questions fall into three primary
categories: Intent (local intent), Goal (global goal), and Survival (agent’s survival status change).
We approach evaluation as a multi-choice question-answering task. Each question offers four choices,
with only one being correct. Questions and choices derive from predefined templates, as showcased
in Tab. 2. For a more detailed explanation, see Appx. B.1.

Table 2: Examples of three categories of questions in🔍 Conan created from predefined templates.
Type Questions

Intent

What did the vandal make on this table?
A: wood sword; B: wood pickaxe; C: iron sword; D: stone sword;
Why did the vandal cut a tree here?
A: make table; B: make wood sword; C: make finance; D: collect apple;

Goal

What was the vandal’s primary objective in this scenario?
A: get diamond; B: defeat zombie; C: collect apple; D: make iron sword;
What was the desired outcome of the task performed by the vandal?
A: make steak; B: make table; C: defeat skeleton; D: collect lava;

Survival

Why did the vandal die in this situation?
A: lack of water; B: lack of food; C: hurt by monster; D: hurt by lava;
What could the vandal have done differently to avoid a negative outcome?
A: avoid monsters; B: get sleep; C: get food; D: get water;

Intent questions target the vandal’s immediate objectives or intentions during its task. To decipher
these traces, agents must deduce the vandal’s underlying intent or subgoals. Solving these questions
necessitates a learning model’s comprehension of the local context.

Goal questions probe the vandal’s overarching objectives, extending beyond immediate intents. They
necessitate grasping the wider context of a task or action sequence. Such questions query the vandal’s
ultimate aims, demanding a learning model to reason within the broader context of the traces.

Survival questions address the wider investigative scope, posing added challenges to the detective.
Centered on the vandal’s survival status changes during tasks (e.g., collecting food for sustenance),
they lead to deviations from the optimal action plan. While not tied to a task’s primary objective,
these questions require a deeper grasp of the present context, often necessitating reasoning around
potential scenarios or alternate results.

Compared with the prevalent VQA setup, wherein questions are based on factual information that
is readily obtainable from the input, 🔍 Conan questions cannot be deciphered given only the
initial information, necessitating further exploration in the scene. Unlike standard embodied question
answering, 🔍 Conan questions cannot be directly parsed as modular primitives; they demand
abductive reasoning, drawing from both new observation and former knowledge to hypothesize,
validate, and revise. For benchmarking purposes,🔍 Conan produced a corpus comprising 100,000
questions. These were derived from 10,000 unique scenes, generated via the Crafter’s scene generator,
with each scene stemming from a task executed by a vandal. This resulted in an average generation
of 10 questions per scene.
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Figure 3: An illustration of the detective pipeline for🔍 Conan. An RL explorer is first trained to gather traces
in accordance with the given question. Given a question and the incident scene, the detective calls the explorer
subroutine to gather evidence. Next, the exploration sequence undergoes key-frame extraction, processed by a
visual encoder, subsequently feeding into a vision-language model for answer selection.

4 The Detective Pipeline

🔍 Conan casts the abductive reasoning challenge as a detective game, necessitating a detective to
efficiently explore and gather information from the environment to deduce plausible explanations (i.e.,
answers) for the given question. This process involves taking into account the temporal dependencies
and incompleteness of the traces. To tackle these challenges encountered in🔍 Conan, we devise a
detective pipeline, as depicted in Fig. 3.

Building on previous work that utilizes hierarchical models for task decomposition (Gordon et al.,
2018; Das et al., 2018; Wijmans et al., 2019), our pipeline is structured into two primary phases: an
exploration phase for trace collection, followed by an abductive reasoning phase. Initially, interaction
with the playground is carried out to collect relevant visual information, which is subsequently
leveraged in the reasoning phase to infer answers to the posed questions.

Computationally, our pipeline first employs RL agents as explorers (see Sec. 4.1) that learn an
exploration policy based on the traces and the question, thereby rendering it goal-oriented. Next,
given the question, we recruit vision-language models (see Sec. 4.3) to predict the answer based on the
observation. A key-frame extractor (see Sec. 4.2) is inserted into the two phases to selectively identify
relevant frames for abduction. The individual components undergo separate training procedures.

4.1 Explorer for Trace Gathering

The primary responsibility of an explorer is to efficiently collect information pertinent to the provided
question. Initially, masks are employed to encode questions by highlighting relevant grids. Subse-
quently, the explorer takes in both the observation and the target question as input and outputs the
action probability.

We use a reward function that incentivizes the agent to scout for clues and traces relevant to the
given question. Additionally, a penalty term is incorporated to discourage unnecessary actions and
inefficient searching, thereby promoting a more targeted exploration strategy.

Specifically, the agent is rewarded with `1 when a trace first appears within its local view, or `2
when the trace bears a close association with the question. A substantial reward of `100 is conferred
upon the agent if it successfully uncovers all traces left by the vandal. Concurrently, the agent incurs
a penalty of ´0.1 for every timestep elapsed, with an additional penalty of ´1 imposed for executing
operating actions.

We evaluate multiple well-regarded RL frameworks as our explorer, including Deep Q-Network
(DQN) (Mnih et al., 2015), Trust Region Policy Optimization (TRPO) (Schulman et al., 2015),
and Recurrent Proximal Policy Optimization (RecurrentPPO) (Schulman et al., 2017). The Stable-
Baselines3 library (Raffin et al., 2021) is employed for all implementations.
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4.2 Key-Frame Extractor

Given that the frames gathered by the explorer tend to be excessively lengthy and redundant, a key-
frame extractor is utilized to sift through and select informative frames containing crucial evidence
for the detective. We adopt a prevalent selection strategy employed in video understanding (Arnab
et al., 2021). Specifically, frames within the temporal bounds determined by the detection of the first
and last traces are retained, from which k frames are uniformly sampled. This design is intended to
tailor the input with the constrained context window size to downstream vision-language models.

4.3 Vision-Language Models for Abductive Reasoning

We employ a multi-choice question-answering paradigm akin to the one used in Ding et al. (2021).
Specifically, the model is presented with a question, its corresponding exploration frame sequence,
and each potential answer choice, subsequently generating a score for each choice. The model is
trained with a categorical cross-entropy loss. During inference, the choice with the highest score
is considered the answer. We evaluate several well-established multimodal models; these models
are known for their efficacy in processing both visual and textual data. Additional details on model
implementation can be found in Appx. D.1.

Vanilla-Trans The first baseline method leverages a vanilla transformer encoder to fuse observation
and textual inputs. Specifically,the raw symbolic map from🔍 Conan serves as the visual feature,
while CLIP’s text encoder (Radford et al., 2021) is employed to encode the textual input.

FrozenBiLM FrozenBiLM (Yang et al., 2022), a state-of-the-art model for video question an-
swering, combines visual input with frozen bidirectional language models, trained on web-scraped
multimodal data. The approach integrates a frozen language model and a frozen vision encoder
with light trainable visual projection modules. FrozenBiLM is tested with BERT-Large (Kenton and
Toutanova, 2019) and DeBERTa-v3 (He et al., 2022) as the language model within our question-
answering system, utilizing the symbolic map from🔍 Conan for visual input.

Flamingo-Mini Flamingo (Alayrac et al., 2022) is a family of vision-language models adept at
rapid adaptation to novel tasks with minimal annotated examples. These models can handle sequences
of visual and textual data, seamlessly accommodating interleaved images or videos as input. We
finetune an open-sourced Flamingo-Mini model with frozen OPT-125M (Zhang et al., 2022), utilizing
the symbolic map from🔍 Conan for visual input.

4.4 Abduction from Deduction (AfD)

The adage “Set a thief to catch a thief ” suggests the use of someone with a similar background or
expertise to apprehend a wrongdoer: the best vandal catchers are vandals. This notion resonates
with the core principle of Abduction from Deduction (AfD): for a skillful detective to abduce what
a vandal does, it needs an in-depth grasp of vandals’ modus operandi, motivations, and decision-
making process. Translating the implication to a mathematical language, we articulate the problem of
abductive reasoning based on evidence and knowledge from known deductive transitions. It can also
be seen as an extension of inverse planning (Baker et al., 2007, 2009; Baker and Tenenbaum, 2014).
Formally, let g denote the goal of the vandal, O the detective’s observation, and S the playground
states post the vandal’s actions. We then have:

P pg | Oq “ E
P pS|Oq

rP pg | S,Oqs “ E
P pS|Oq

rP pg | Sqs, (1)

where we assume the independence of g w.r.t. O given S, as the goal ought to be clear given the
states. Leveraging Bayesian rules, we further observe that

P pg | Sq 9 P pS | gq 9
ź

i

πpai | si, gq, (2)

assuming a uniform prior over g and known deterministic environment transitions. Eq. (2) asserts
that P pg | Sq is proportional to a goal-conditioned forward action policy, where si, ai Ñ si`1.

Intuitively, Eqs. (1) and (2) can be understood as follows: to abduce the vandal’s goal from observa-
tion, it is imperative to first reconstruct the actual states traversed by the vandal and subsequently
ascertain the most plausible goal that, if pursued forward, would result in those states; see Eq. (1).
Eq. (2) can be interpreted as a form of deduction, being contingent on transition knowledge derived
from a forward action policy. Hence the name Abduction from Deduction (AfD).

7



In practice, two approaches emerge for implementing P pg | Sq based on Eq. (2). The first entails
iterating over all g and utilizing a learned or predefined πp¨q to score a lengthy sequence of states.
Conversely, the second approach embraces a data-driven strategy, wherein one arbitrarily selects g,
samples S from πp¨q, and learns a model of P pg | Sq using the pg, Sq pairs. The former approach
proves time-intensive during inference due to the combinatorial temporal space and expansive goal
space, thereby compelling us towards the latter approach. For implementation, we train P pS | Oq

independently as a Dirac delta function of δpfpOqq and P pg | Sq from sampled pairs from πp¨q

employed in task execution in the vandal. The derived goal features, along with the question, are fed
into the model for answer prediction. Please refer to Appx. F for additional details.

5 Experiments

5.1 Experimental Setup

Exploration The explorer is trained using DQN, TRPO, and RecurrentPPO for 108 steps, with a
buffer size of 107 and a batch size of 512. In the case of DQN, training is conducted with ϵ “ 0.96.
Each episode is capped at a maximum of 500 steps for the explorer. A curriculum is employed to
encourage long-term exploration whilst maintaining a balance with local search: initial training is
carried out with traces from long-horizon tasks like “get the diamond,” compelling the agent to
venture farther from its starting point. Subsequently, the agent undergoes further finetuning across the
entire dataset. Such a curriculum design prevents a sole focus on local discovery. For downstream
reasoning models, k “ 30 keyframes are extracted by the key-frame extractor.

Abductive Inference Our reasoning models are tested under three different settings: Standard,
Ideal Explorer, and AfD. In the Standard setting, models undergo training and testing based on the
explorer’s exploration. The Ideal Explorer setting sees models leveraging on an optimal exploration
policy—visible to the ground-truth vandal’s trajectory, albeit imperfect, it facilitates the agent in
gathering sufficient evidence for reasoning. This scenario can be conceived as a measure of the
reasoning model’s aptitude for passive reasoning given complete information. Under the AfD setting,
models are trained and used as delineated in Sec. 4.4. All models are trained utilizing 8 NVIDIA
GeForce RTX 3090 GPUs. For further training specifics, please refer to Appx. D.2.

5.2 Results and Analysis
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Figure 4: Learning curves of various RL explorers.
The suffix n denotes the maximum number of steps per
episode during exploration. Results show that (i) TRPO
and RecurrentPPO markedly outperform DQN in perfor-
mance, and (ii) longer episodes marginally contribute
to the performance at the expense of longer exploration
time and the accrual of unrelated information.

Fig. 4 shows the learning curves of vari-
ous RL agents during exploration. TRPO and
RecurrentPPO manifest similar performance in
terms of rewards following a substantial number
of steps, markedly surpassing the DQN explorer.
Additionally, we probe the impact of augment-
ing the maximum number of exploration steps
to 5, 000 on performance. The data suggests a
marginal performance uplift. Nonetheless, we
acknowledge that such a performance increment
is at the expense of substantially longer explo-
ration time and a notable surge in the accrual of
unrelated information. Consequently, we select
TRPO with a maximum of 500 steps per episode
as our standard RL explorer.

Quantitative results on🔍 Conan are depicted
in Tab. 3; both the standard and AfD results
reported employ TRPO as the explorer. In the
standard setting, we discern that while models exhibit some aptitude in tackling low-level Intent
questions, they struggle with higher-level questions pertaining to Goal and Survival. Among the
models, Flamingo-Mini ascends to the pinnacle with an accuracy of 66.3%. FrozenBiLM models
also perform relatively well. Notably, the DeBERTa variant slightly outperforms BERT, insinuating
that a robust language backbone can improve general comprehension. Contrarily, the Vanilla-Trans
model languishes across all tasks, achieving merely random-level performance.
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Table 3: Performance of abductive reasoning models on 🔍 Conan. We report the question-answering
accuracy (%) across various settings, with the overall accuracy averages over all question categories. F-BiLM
refers to the FrozenBiLM model. I denotes Intent, G denotes Goal, S denotes Survival, and O denotes Overall.
Results exhibiting the top individual performance are highlighted in bold, while models with the superior overall
performance are shaded in gray.

Standard Ideal Explorer AfD

I G S O I G S O I G S O

Vanilla-Trans 32.9 25.0 24.5 28.8 64.0 78.4 58.1 66.1 24.8 23.3 24.5 24.3
F-BiLM-BERT 72.6 44.4 54.4 61.0 87.5 59.5 61.5 74.0 82.8 42.9 55.5 66.0

F-BiLM-DeBERTa 82.9 43.1 52.2 65.3 87.7 71.8 63.9 77.8 82.9 41.9 53.8 65.4
Flamingo-Mini 86.2 43.3 49.5 66.3 85.8 47.8 56.6 69.0 84.9 42.5 52.2 66.1

With the Ideal Explorer, we notice a clear performance boost across all tasks, particularly in the
Goal and Survival questions. These results allude to the potential bottlenecking of models’ abductive
reasoning capability due to the insufficient information collected, underscoring the significance of
effective exploration. An adept explorer can significantly aid in the accrual of useful information,
informatively pursuing a hypothesis to scrutinize evidence, swiftly self-correcting upon encountering
conflicting evidence, and reasonably re-planning. The findings also hint sufficient room for the RL
explorer to improve. Remarkably, the Vanilla-Trans exhibits the greatest increase, insinuating that, in
comparison to other baseline models, it is markedly vulnerable to insufficient evidence.

For AfD results, nearly all multimodal models exhibit performance on par with end-to-end supervis-
edly trained models. Remarkably, FrozenBiLM models even surpass the performance observed in
standard settings. The persisting failure of Vanilla-Trans can be ascribed to its weakness in reasoning
amidst incomplete observations due to the significant disparity between the familiar complete state S
and incomplete observation O. Examining task-specific results, a notable performance uplift in the
Survival task models is discernible for almost all models relative to the standard setting, albeit sharing
the same observation. These results intimate that the inclusion of deductive information sensitizes
the detective to vandal’s concerns during task execution. Nevertheless, the exhibited performance
in long-term planning remains weak, reinforcing the pressing need for a better exploration policy.
Critically, these models continue to find short-term intent questions to be most easily answered.

5.3 Further Discussion

Additional Experiments We further experiment in the absence of visual inputs, serving as a
negative control baseline, resulting in random performance across all settings; see Appx. E. This
random-level performance underscores the severe constraints imposed on the agent without visual
information. The TRPO explorer shows a noticeable improvement over the ones without visual
inputs, suggesting that even minimal exploration is preferable to none. Nonetheless, the performance
remains relatively modest. On the other hand, the Ideal Explorer demonstrates markedly superior
performance, attesting to the substantial benefits its capacity to accrue perfect trace evidence renders
to the downstream reasoning task. This accentuates the imperative of effective exploration.

Table 4: Error analysis on 🔍 Conan. We examine the accuracy of FrozenBiLM-DeBERTa across various
tasks, comparing two explorer groups: reasoning based on the TRPO explorer and the Ideal explorer (in gray).

get_drink defeat_cow get_apple defeat_skeleton make_iron_pickaxe
47.06 43.90 35.7 46.59 56.52

100.00 85.37 78.57 82.95 52.17

place_bed make_steak make_stone_pickaxe get_coal make_stone_sword
43.90 46.15 48.48 50.00 37.50
87.80 50.00 39.39 45.45 4.17

get_iron get_water get_stone make_iron_sword place_furnace
28.57 45.95 36.84 56.25 44.44
46.43 54.05 47.37 28.12 83.95

get_diamond place_table get_wood make_wood_pickaxe make_wood_sword
40.62 39.36 36.00 40.00 50.00
84.38 91.49 96.00 55.00 64.29

make_bed get_lava make_bucket get_beef defeat_zombie
47.83 50.00 35.29 53.85 52.50
39.13 66.67 73.53 42.31 75.00
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Error Analysis We extend an error analysis for the “goal” split, probing the reasoning model across
a spectrum of tasks. Table 4 compares two groups: reasoning based on the Ideal explorer and the
TRPO explorer. The findings underscore that proficient exploration, i.e., the heuristic Ideal explorer
who recovers the vandal’s trajectory, is sufficient for satisfactory performance. However, to fully
harness the potential, a more adept reasoner is requisite, one capable of deciphering the vandal’s
hidden states from observed traces. For instance, the act of felling trees could signify a need for either
wood or food (apples), and discerning the intent solely from traces of felled trees presents a challenge.
When it comes to “trace-relevant” frames or “keyframes,” the Ideal explorer could ostensibly furnish
all trace-relevant frames. However, the concept of keyframes remains nebulous. Within the video
understanding domain, a formidable challenge lies in the extraction of “keyframes.” This is a post-hoc
concept that eludes straightforward acquisition upfront. A prevailing approach, aimed at augmenting
efficiency (diminishing context length in Transformer), entails truncating it via every k-th frame.

Joint Reasoning The collective enhancement of both exploration and reasoning elements emerges
as quintessential, given its mirroring of human-like intelligence. For instance, by providing feedback,
the reasoner can steer the explorer towards actions that are potentially more insightful and likely
to produce pertinent traces. Nonetheless, practical implementation encounters significant hurdles.
Assigning credit to exploratory decisions bearing long-term implications can be intricate, particularly
when the outcomes of exploratory actions become evident after a substantial time lapse, thereby
muddying the causal relationship between the decisions and their ultimate effect on reasoning and
answering questions. This accentuates the mutual reliance between exploration and reasoning—
advancement in one facet demands progression in the other, introducing a bilateral dependency that
complicates optimization. The reasoning component alone demands hefty training and computational
resources, especially when utilizing large language models. The demand for formidable computational
power renders the simultaneous optimization of exploration and reasoning exceedingly daunting.
Collectively, this approach is also widely adopted (Gordon et al., 2018; Lei et al., 2018; Kočiskỳ
et al., 2018). Consequently, we navigate along this trajectory, projecting that future endeavors on
🔍 Conan should prioritize reasoning above exploration.

To summarize, the engagement of a proficient explorer substantially enhances abductive reasoning,
particularly in higher-level tasks such as goal-oriented and survival-centric inquiries. This underlines
the criticality of exploration as a precursor to tackling abductive reasoning tasks in the presence of
incomplete information. Furthermore, the achievement of the AfD hint at the potential for models to
harness world knowledge, especially transition knowledge pertaining to tasks and traces, to transform
abductive reasoning into deductive simulation. We posit that the presented approach resonates more
with human-like reasoning, edging us closer to the core of human intelligence.

6 Conclusion

In this paper, we introduce🔍 Conan, a benchmark tailored to evaluate and assess models’ active
reasoning ability in addressing incomplete-information questions in an interactive environment.
🔍 Conan sets itself apart from existing abductive reasoning benchmarks by incorporating an open-
world playground facilitating active exploration. It differentiates itself from prevailing embodied
question-answering benchmarks by introducing the demanding abductive process in question answer-
ing, necessitating multi-round abductive inference based on gathered evidence. Moreover, we propose
a new learning paradigm, Abduction from Deduction (AfD), that turns the problem of abduction to
deduction, exploiting the problem structure through Bayesian principles. Benchmarking the efficacy
of contemporary machine learning models on 🔍 Conan, we elucidate the model limitations in
interacting with the environment that leads to failure in higher-level, longer-term abductive reasoning.

Limitations and Future Work In general, we notice two significant limitations from the ex-
perimental results. For one, the explorer does not supply particularly relevant information for the
reasoning model. In the human abductive reasoning process, exploration and reasoning should be
closely intertwined, with an agent using the current hypothesis to guide exploration and improve its
understanding. However, due to long-range exploration and complex vision-language reasoning, we
only applied the conventional visual question-answering method and did not fully integrate these two
processes. For another, learning naive question-answer mapping shall be sub-optimal. By leveraging
the problem structure, AfD has shown improved performance on a particular set of problems. Never-
theless, the current AfD formulation is still rudimentary. We believe an in-depth understanding of the
structure and well-crafted implementation could further boost performance.
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