
A. Model
Why do we mainly focus on the articulated object pose

estimation? Existing studies of HOI usually estimate the
pose of humans and objects jointly, hoping the two estima-
tions to improve each other. However, due to the imbalanced
attention received by the human and articulated object pose
estimation, we empirically observe that the object pose esti-
mation is far from well-solved compared with human pose
estimation, especially in scenarios where dense interactions
and occlusions appear. Therefore, we mainly focus on im-
proving the untouched articulated object pose estimation
under human pose guidance in this paper, leveraging the ma-
ture and stable techniques of human pose estimation. Such
motivation is similar to Ye et al. [61], which focuses on
improving the reconstruction of interacting objects rather
than the hand. Of note, our dataset still supports human pose
estimation and encourages efforts that potentially improve
it. Tab. 4 from the main text shows that incorporating the
human pose information can significantly improve the object
pose estimation performance, which verifies our assumption.
The ground-truth human pose can further improve the object
pose estimation by a large margin, demonstrating that further
optimization of human poses is promising. It is regarded as
one important step in our future work.

Coordinates for reconstruction and optimization
Both object reconstruction and optimization are conducted
in the human local coordinate centered at the pelvis bone
of the SMPL model with the same orientation as the human
root. Specifically, the local coordinate system is established
with the x-axis directed forward from the human, the y-axis
pointing upward toward the human’s head, and the z-axis
extending to the left. We set a 2m ˆ 2m ˆ 2m cubic as the
boundary for voxelization and interaction prior.

Details of Reconstruction Model We use the ResNet-
101 to extract features from the input image outputs fea-
ture vectors of 1024 dimensions. The feature vector is then
mapped to 128ˆ8ˆ8ˆ8 to form the input of the 3D blocks.
Each 3D block consists of a 3D convolutional layer with a
kernel size 3 ˆ 3 ˆ 3, a max-pooling layer, and a batchnorm
layer. The number of channels of the first 3D convolutional
layer is 129, including 128 for the object and 1 for the con-
catenated human occupancy. The channels for the object are
reduced by half after each block. The max-pooling layer has
a pooling size of 2ˆ2ˆ2 and a stride of 2 in all dimensions.

Adapting D3D-HOI as baseline for our task The
D3D-HOI method [58] is originally designed for hand-
centric interactions, such as opening and closing a mi-
crowave, and contains manually defined optimization ob-
jectives, such as distance between hand and object. We make
the following modifications to D3D-HOI to better fit the
context of CHAIRS:
1. We replace the differentiable articulated object

model in D3D-HOI by the pytorch kinematics pack-

Table A1: Object reconstruction errors on BEHAVE dataset,
with object kinematic structure and optimization.

Chair Table Yogaball Suitcase
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CD.Ó
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(%)

w/o HOI prior 134.5 11.35 161.6 10.53 106.37 30.53 161.0 29.80
w/ HOI prior 127.3 14.22 152.2 12.86 98.79 33.75 158.4 29.62

age (https://github.com/UM-ARM-Lab/
pytorch_kinematics), which supports articulated
objects with multiple links and joints.

2. We changed the contact error in D3D-HOI to the distance
between the hip joint and the center of the chair seat.
Since the hip joint is usually higher than its nearby skin,
we compute this error by adding a 20cm offset along the
negative Y direction.

3. The orientation term in D3D-HOI encourages the human
and the object to have opposite directions in “opening”
and “closing” actions. We change this term to encourage
the human to have the same orientation as the chair in the
“sitting” case.
Data preparation for CHORE and PHOSA Since

PHOSA requires predefined contact pairs as heuristics to
reconstruct human-object interaction, we manually labeled
each object mesh with contact maps corresponding to human
body parts during the interaction. A part of the labeling
results are shown in Fig. A2.

B. Additional Results
Generative model We evaluate the value of AHOI in

CHAIRS by training conditional generative models [22] on
both the CHAIRS dataset and the COUCH [67] dataset. Fig-
ure A3 shows that both models can generate realistic interac-
tions with objects, and the model trained with CHAIRS can
generate interacting poses with more full-body interactions.
This observation confirms the value and the contribution of
our CHAIRS dataset.

Qualitative results In Fig. A4, we qualitatively show
more randomly selected results on the test set of CHAIRS.
In general, our model predicts accurate object poses and
shapes.

Qualitative comparisons We further compare recon-
structions of our method against results from CHORE [56]
and PHOSA [65] in Fig. A5. The qualitative comparison
shows that our method can reconstruct interactions accu-
rately.

In the wild In Fig. A6, we qualitatively evaluate the
generalization power of our model with internet images and
images captured in the wild.

Experimental results on the BEHAVE dataset We
apply our method to the BEHAVE dataset [2] to evaluate the
generalizability of the reconstruction and HOI prior model.
We select four objects from the object list with rich full-body
HOI, namely a chair, a square table, a yoga ball, and a suit-
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case. Our method is tested under the full object knowledge
setting. We separately train object reconstruction and HOI
prior models for each object. Different kinds of interaction
(e.g., move and sit for the square table) are mixed up in one
model. We show quantitative results in Tab. A1 and qualita-
tive results in Fig. A7. We observe that although the metrics
drop numerically, our model can still reconstruct the poses
of the interacting objects.

C. Dataset

C.1. Data collection

Object gallery We render all objects in CHAIRS in
Fig. A8. Parts are colored according to category.

Instructions Each participant was instructed to sit
down before and after each instruction for synchronization.
Participants can stand up and walk around while performing
an instruction. All physical interactions were performed with
the sittable objects. All other objects that appeared in the
instructions (table, person, phone, etc.) required participants
to interact by imaging their presence.
1. Pick up an object from the ground.
2. Talk to someone next to you.
3. Relax alone at home.
4. Listen to your friend talk while propping your head with

your hand.
5. Sit and play with your phone.
6. Sit with your hands on the seat.
7. Think with your head lowered.
8. Your neck feels uncomfortable.
9. Grab a thing from the desk behind you.

10. Move the chair forward.
11. Lean on the back. Adjust or rock it if you can.
12. Move the chair.
13. Adjust the chair.
14. Sit with a twisted posture.
15. Sit with your feet on the footstep or the footrest.
16. Change the pose of your legs.
17. Stretch a little in the chair.
18. Change to another pose of sitting.
19. Adjust the height of the seat.
20. Walk around the chair and sit down.
21. Move, rock, or rotate the chair.
22. Your back feels uncomfortable.
23. Lean your head on the headrest. Adjust it if possible.
24. Stretch your back in the chair.
25. Talk to the person behind you.
26. Move the chair backward.
27. Lay in the chair.
28. Put your arms on the armrests. Adjust them if you can.
29. Move the chair to your left.
30. Move the chair to your right.
31. Adjust the seat.

32. Pick up a heavy object from the ground.
We only sample instructions that are compatible given an

object. For example, “Lean on the back” is not compatible
for all stools. Figure A9 shows diverse performances in
CHAIRS.

Recruitment Due to the complex nature of data col-
lection that requires physical presence at the scene while
wearing MoCap suits, all participants were voluntary col-
leagues. Participants were compensated with a gift with a
value of $4 USD for every 18 sequences recorded.

Body and hand shape We use optical trackers to record
the positions of each participant’s head, two hands, and two
feet. We then optimize the body shape parameter β of the
SMPLX model to fit the tracker positions. We rely on SM-
PLX’s default hand shape parameter since our primary focus
is not to model dexterous hand-object interactions.

Motion capture system We used a Noitom Virtual Pro-
duction Solution (VPS) camera system and a Noitom Per-
ception Neuron Studio IMU system. The cameras each have
1280x1024 resolution, 210 fps, ă5ms latency, 3.6mm F#2.4
lens, 81 deg horizontal FoV, and 67 deg vertical FoV.

C.2. Post Processing

Spatial alignment Our data collection system consists
of multiple pieces of hardware, including 4 Azure Kinect DK
cameras and a hybrid MoCap system. Each camera and the
MoCap system have their own coordinate systems. We use
OpenCV and an Aruco checkerboard to register all cameras
to the camera space of the left-most camera and align it
with the MoCap’s coordinate frame with an Iterative Closest
Points (ICP) algorithm.

Given the transformation matrices of the Kinect cam-
eras, we apply a custom ICP algorithm to refine both the
multi-view point clouds and the registration of Kinect and
Mocap. We base our method on plane-to-plane correspon-
dences [44] to alleviate the sensitivity to outliers, distur-
bances, and partial overlaps. Given the source point set
P “ tpi, i “ 1, ..., Nu captured by the Kinect depth cam-
eras and the target set Q “ tqi, i “ 1, ...,Mu reconstructed
from the MoCap system, the goal is to calculate the optimum
transformation matrix T , such that TPT “ QT . Following
point-to-point ICP [6], we first find the nearest points rqi in
Q to each pi in P . Next, we iteratively update T to minimize
the Mahalanobis distance between P and Q:

T “ argmin
T
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where di is the corresponding Euclidean distance between
pi and rqi, C

Q

n,̃i
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n,i the covariance matrix calculate by
the n nearest points around rqi in Q and pi in P . Finally, we
use Anderson Acceleration [12] for a faster convergence to
a fixed point.



Temporal alignment Observed images and poses in
CHAIRS come from two independent systems (i.e., MoCap
and Kinect) without clock synchronization. Since both sys-
tems run steadily at 30 Hz, the two recorded data streams
have a constant difference in time. We use a time-lagged
cross-correlation (TLCC) [45] algorithm to align the two
systems temporally.

Specifically, we first extract the heights of the subject’s
head and two hands from both systems. For our MoCap
system, we can directly read the joint positions with forward
kinematics. For the Kinect cameras, we obtain the human
joint positions with the Kinect Body Tracker SDK. Next,
we compute the first-order differential on each sequence
and compute the time offset between the differentials of
each joint using TLCC. Finally, by measuring the peak of
the TLCC correlation, we obtain three offsets (one for each
joint); we use the median of the three offsets as our final
temporal offset.

Data Filtering by Distance To highlight the feature
of human-object interaction, we exclude frames where the
distance between the human pelvis and the chair’s center of
mass exceeds 2 meters.

D. Compliance
List of code, data, models used, and their licenses We

used the following assets. Please find the licenses of corre-
sponding assets in the directories inside square brackets.
• SMPL-X [38] model and body [license/smplx-

model,license/smplx-body.txt]
• ExPose [7] model and code [license/expose.txt]
• FrankMocap [42] model and code [li-

cense/frankmocap.txt]
• PARE [27] model and code [license/pare.txt]
• Category-Level Articulated Object Pose Estimation [28]

model and code [No license information found.]
• Metropoly rigged 3D people (used in main paper Fig.3

and supplementary video)
• D3D-HOI [58] code [No license information found.]
• iStock [https://www.istockphoto.com] images

used for in-the-wild evaluations. [license/istock.txt]

https://www.istockphoto.com


Figure A1: Detailed diagram of the optimization process.



Figure A2: Labeled contact maps We use three colors to show the mappings of the surfaces on human bodies and objects that frequently
get in touch during interactions.



Figure A3: Generated interacting human poses. Top: model is trained on CHAIRS; bottom: model is trained on COUCH [67].



Figure A4: Additional qualitative results of our model on the test set of CHAIRS.



Figure A5: Qualitative comparisons. From left to right: RGB image, CHORE reconstruction, CHORE reconstruction from second view,
PHOSA reconstruction, PHOSA reconstruction from second view, our reconstruction, and our reconstruction from second view. Results
show a clear advantage of our method in modeling interactions.
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Figure A6: Qualitative results of running our model on images captured in the wild.
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Figure A7: Qualitative results of running our model on images from the BEHAVE [2] dataset.



Figure A8: Sittable objects in CHAIRS. The first six rows are the objects in the training set, whereas the last row shows the ones in the test
set.



Figure A9: Performances of different participants on different objects with the same instruction. The first four rows show four
performances of the instruction “Move the chair.” The second participant rotated the chair with a small angle. The last four rows show four
performances of the instruction “Stretch a little in the chair.”


