

Dataset

✓ **CHAIRS**, an extensive motion-captured full-body articulated HOI dataset. ✓ Comprises 17.3 hours of diverse interaction sequences. ✓ Involves **46 participants** and **81 objects** with various movable parts.

Data collection setup consisted of Four front-facing RGB-D cameras > Hybrid trackers on movable parts of objects > 17 IMUs distributed on the participants.

Tasks

Task I: articulated object pose estimation from images

Full-Body Articulated Human-Object Interaction

¹ School of Intelligence Science and Technology, Peking University ² Beijing Institute of General Artificial Intelligence (BIGAI)³ Department of Automation, Tsinghua University⁴ Center on Frontiers of Computing Studies, Peking University ⁵ Institute for Artificial Intelligence, Peking University

Penetration removal process: Adjust positions of joints responsible for penetration Adjust skeleton by IK

Task II: interacting human pose synthesis from articulated chairs

Quantitative results on task I: pose estimation

Method	Object				HOI		Mathad	Object				HOI	
	Rot.↓	Transl.↓	CD↓	IoU↑	Pene.↓	Cont.↓	Method	Rot.↓	Transl.↓	CD↓	IoU↑	Pene.↓	Cont.↓
	(°)	(mm)	(mm)	(%)	(mm)	(mm)		$(^{\circ})$	(mm)	(mm)	(%)	(mm)	(mm)
LASR [†] [59]	/	/	205.2	/	/	/	Full [†]	/	/	160.2	11.03	4.530	2.720
Ours (w/o opt.) [†]	/	/	160.2	11.03	4.530	2.720	$- \text{prior}^{\dagger}$	/	/	165.3	10.52	4.377	3.295
ANCSH* [28]	/	/	90.36	/	/	/		10.25	(())	52 0	01.55	1 1 1 2	1 8 ()
PHOSA* [65]	29.31	175.2	177.9	7.60	2.046	1.689	Full*	19.35	66.23	72.30	21.57	1.143	1.562
D3D-HOI* [58]	27.31	119.2	126.9	16.60	7.472	1.163	– prior*	19.97	83.39	87.90	18.81	1.749	2.081
CHORE* [56]	21.82	87.58	95.40	16.44	1.050	1.742	$-\operatorname{contr.}^*$	21.52	81.90	87.28	18.93	1.265	2.393
Ours (w/ opt.)*	19.35	66.23	72.30	21.57	1.143	1.562	- inter.*	17.88	69.53	78.12	19.50	1.022	2.320
*. mosthad roa	iroc l	un a vul a d		hianta	+ w +	o ond/o		•					

†: method does not rely on object-related knowledge.

Nan Jiang^{1,2}*, Tengyu Liu^{2,*}, Zhexuan Cao³, Jieming Cui^{1,2}, Zhiyuan Zhang^{2,3}, Yixin Chen², He Wang⁴, Yixin Zhu^{5⊠}, Siyuan Huang^{2⊠}

The reconstruction model uses the human pose for object pose estimation. We . regress the root 6D pose from human pose and image feature; 2. reconstruct object voxel from voxelized human and image feature; and 3. refine object pose and shape with reconstructed voxel and interaction prior.

Results

Qualitative results on **Task I: object pose estimation**

: method requires knowledge of object structure and/or geometry;

https://jnnan.github.io/project/chairs/

The interaction prior model, a cVAE, is trained to generate object voxels conditioned on human poses. During inference, we minimize the norm of the latent code.

Qualitative Results on Task II: human pose synthesis

Ours

Baseline