Evaluating Physical Quantities and Learning Human Utilities From RGBD Videos
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Figure 1: (a) The top 7 human poses using physical quantities ¢,(G). The algorithm seeks physically comfortable sitting poses, resulting
in casual sitting styles; e.g., lying on the desk. (b) Improved results after adding spatial features ¢s(G) to restrict the human-object relative
orientations and distances. Further including temporal features ¢.(G) yields the most natural poses (c). The yellow bounding box indicates
the door, the initial position for the path planner. Samples generated near the 3D chair labeled with a red bounding box do not produce high

scores as forces apply on the arms of the person in the observed demonstration. The lack of chair arms leads to low scores.

Abstract

We propose a notion of affordance that takes into account physical
quantities generated when the human body interacts with real-world
objects, and introduce a learning framework that incorporates the
concept of human utilities, which in our opinion provides a deeper
and finer-grained account not only of object affordance but also of
people’s interaction with objects. Rather than defining affordance
in terms of the geometric compatibility between body poses and
3D objects, we devise algorithms that employ physics-based simu-
lation to infer the relevant forces/pressures acting on body parts. By
observing the choices people make in videos (particularly in select-
ing a chair in which to sit) our system learns the comfort intervals
of the forces exerted on body parts (while sitting). We account for
people’s preferences in terms of human utilities, which transcend
comfort intervals to account also for meaningful tasks within scenes
and spatiotemporal constraints in motion planning, such as for the
purposes of robot task planning.
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1 Introduction

In recent years, there has been growing interest in studying object
affordance in computer vision and graphics. We propose to go
beyond visible geometric compatibility to infer, through physics-
based simulation, the forces/pressures on various body parts as peo-
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Figure 2: Sitting activities in (a) an office and (b) a meeting room.

ple interact with objects. By observing people’s choices in videos—
for example, in selecting a specific chair in a scene (Fig. 2)—we
can learn the comfort intervals of the pressures on body parts as
well as human preferences in distributing these pressures among
body parts. Thus, our system is able to “feel”, in numerical terms,
discomfort when the forces/pressures on body parts exceed comfort
intervals. We argue that this is an important step in representing /hu-
man utilities—the pleasure and satisfaction defined in economics
and ethics (e.g., by the philosopher Jeremy Benthem) that drives
human activities at all levels. In our work, human utilities explain
why people choose one chair over others in a scene and how they
adjust their poses to sit more comfortably.

In addition to comfort intervals for body pressures, our notion of
human utilities also takes into consideration: (i) the tasks observed
in a scene—for example, students conversing with a professor in
an office (Fig. 2(a)) or participating in a teleconference in a lab
(Fig. 2(b))—where people must attend to other objects and humans,
and (ii) the space constraints in a planned motion—e.g., the cost to
reach a chair at a distance. In a full-blown application, we demon-
strate that human utilities can be used to analyze human activities,
such as in the context of robot task planning. A longer version of
this paper was reported in [Zhu et al. 2016].

2 Related Work

The concept of affordance was first introduced by [Gibson 1977].
Later, researchers incorporated affordance cues in shape recogni-
tion by observing people interacting with 3D scenes [Delaitre et al.
2012; Fouhey et al. 2014; Wei et al. 2013]. Adding geometric con-
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Figure 3: (a) The final force histograms of 6 (out of 14) body parts.
The x axis indicates the magnitudes of the forces, the y axis their
frequencies and potential energy. (b) The average forces of each
body part normalized and remapped to a T pose.

straints, several researchers computed alignments of a small set of
discrete poses [Grabner et al. 2011; Gupta et al. 2011; Jiang and
Saxena 2013]. More recently, Savva et al. [Savva et al. 2014] pre-
dicted regions in 3D scenes where actions may take place. A closely
related topic is to infer the stability and the supporting relations in
a scene [Jia et al. 2013; Zheng et al. 2014; Liang et al. 2015].

3 Learning and Inferring Human Utilities

Extracting Features. We craft features ¢(G) of three types: (i)
spatial features ¢ (G) encoding spatial relations, (ii) temporal fea-
tures ¢¢(G) associated with plan cost, and (iii) physical quantities
¢p(G) produced during human interactions with scenes. Spatial
features ¢, (G) are defined as human-object / object-object relative
distances and orientations. Temporal features ¢, (G) are defined as
the plan cost from a given initial position to a goal position. Phys-
ical quantities ¢,(G) produced by people interacting with scenes
are computed using the FEM [Gast et al. 2015].

Learning Human Utilities. The goal in the learning phase is
to find the proper coefficient vector w of the feature space ¢(G)
that best separates the positive examples of people interacting with
scenes from the negative examples.

Under the rational choice assumption, we consider the observed
rational person interacting with the scenes G* a positive example,
and the imagined random configurations {G;} as negative exam-
ples. Here, we formulate the learning phase as a ranking prob-
lem [Joachims 2002]—the observed rational person interaction G*
should have lower cost than any imagined random configurations
{G;} with respect to the correct coefficient vector w of ¢(G).

Learning the ranking function is equivalent to finding the coef-
ficient vector w such that the maximum number of the follow-
ing inequalities are satisfied: (w, ¢(G*)) > (w, d(Gi)), Vi €
{1,2,-- ,n}, which corresponds to the rational choice assumption
that the observed person’s choice is near-optimal. To approximate
the solution to the above NP-hard problem [Hoffgen et al. 1995],
we introduce non-negative slack variables &; [Cortes and Vapnik
1995]: min L(w,w) + AD " & Vi € {1, ,n},st. & >
0, {w, p(G*)) — (w, d(G:)) > 1 — &7, where ) is the trade-off
parameter between maximizing the margin and satisfying the pair-
wise relative constraints.

Inferring the Optimal Affordance. Given a static scene, the
goal in the inference phase is to find, among all the imagined con-
figurations {G; } in the solution space, the best configuration G* that
receives the highest score: G* = arg maxg, (w, ®(G;)).

4 Conclusion

We have taken a step further from the current stream of studies
on object affordance by inferring the invisible physical quantities
and learning human utilities from videos. Physics-based simulation

is more general than geometric compatibility, as suggested by the
various “lazy/casual seated poses” that are typically not observed
in public videos. We argue that human utilities provide a deeper
account for object affordance as well as for human behaviors.
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