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Synthesizing Diverse and Physically Stable Grasps
with Arbitrary Hand Structures

using Differentiable Force Closure Estimator
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Abstract—Existing grasp synthesis methods are either ana-
lytical or data-driven. The former one is oftentimes limited
to specific application scope. The latter one depends heavily
on demonstrations [1], thus suffers from generalization issues;
e.g., models trained with human grasp data would be difficult
to transfer to 3-finger grippers. To tackle these deficiencies,
we formulate a fast and differentiable force closure estimator,
capable of producing diverse and physically stable grasps with
arbitrary hand structures, without any training data. Although
force closure has commonly served as a measure of grasp quality,
it has not been widely adopted as an optimization objective
for grasp synthesis primarily due to its high computational
complexity; in comparison, the proposed differentiable method
can test a force closure within milliseconds. In experiments, we
validate the proposed method’s efficacy in six different settings.

Index Terms—Grasp synthesis, Dexterous manipulation,
Energy-based model, Optimization, Force closure

I. INTRODUCTION

GRASP synthesis has been a challenging task due to
the complexity of hand kinematics. Although force clo-

sure has been commonly accepted to evaluate the quality of
the generated grasps, researchers usually avoid using it as
an optimization objective: Computing force closure requires
solving for contact forces, which is an optimization problem
itself. As a result, using force closure as the optimization
objective in grasp synthesis would produce a notoriously slow
and nested optimization problem. Instead, researchers have
primarily turned to analytical or data-driven methods [1].

Analytical methods use manually derived algorithms. Due
to the intrinsic complexity of the grasp synthesis, these meth-
ods [2–4] typically perform only in limited settings (usually
on power grasps [5]) and are only applicable to specific
robotic hand structures. Modern approaches focus more on
data-driven methods [6, 7], which rely on large datasets of
human demonstrations. Although these methods can reproduce
(and even interpolate) similar but different grasps compared to
human demonstrations, they are inherently difficult to general-
ize (especially to extrapolate) to arbitrary hand kinematics and
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Fig. 1: Grasp synthesis process by minimizing the force closure
error. The green trianglets in (c)(d) denote the friction cones at
contact points used to calculate force closure.

unseen grasp types. Furthermore, these data-driven methods
usually do not consider the physical stability in producing
grasps, making them difficult to deploy on physical robots.

In this paper, we rethink the grasp synthesis problem and de-
rive a differentiable force closure estimator, computed within
milliseconds on modern desktops. Such fast computation of
force closure opens a new venue for grasp synthesis. Since
it does not rely on training data or restrict to specific robotic
hand structures, our method can be applied to arbitrary hand
structures to synthesize physically stable and diverse grasps.

Specifically, our method is on the basis of two simple
yet reasonable and effective assumptions: zero friction and
equal magnitude of contact forces, which avoid solving the
contact forces as an optimization problem. Intuitively, such
assumptions indicate that the contact force on each contact
point becomes simply the object’s surface normal on that
point. Consequently, the overall nested optimization problem
is converted to minimizing the errors that violate the above as-
sumptions; see an example in Fig. 1. In a series of experiments,
we demonstrate that our estimated error reflects the difference
between surface normal vectors and force closure contact force
vectors. We further devise a grasp energy function based on
the estimated force closure and validate the force-closure grasp
synthesis by minimizing the energy function in six settings.

This paper makes three primary contributions: (i) We for-
mulate a fast and differentiable estimator of force closure,
computed within milliseconds. (ii) We synthesize diverse
grasps with arbitrary hand structures without any training
data. (iii) Since our method is independent of specific hand
structures, grasping and manipulation algorithms built upon
our method would be easily transferable among competitions
and benchmarks that require different end-effectors.

https://sites.google.com/view/ral2021-grasp/
https://sites.google.com/view/ral2021-grasp/
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II. RELATED WORK

Grasp synthesis literature can be roughly categorized into
two schools of thought: analytic and data-driven approach.

The analytic approach generates grasps by considering
kinematics and physics constraints [8]. Although force closure
has been commonly adopted as the physics constraint [9–12],
primary efforts focus on simplifying the search space (e.g.,
[2–4]) as testing force closure is expensive. However, these
methods are only effective in specific settings or applications.

The data-driven approach leverages recent advancements in
machine learning to estimate grasp points. Despite promising
progress [13–15], this approach relies heavily on large datasets
to learn successful grasps, with a particular focus on grippers
with limited DoF. Although recent literature [16–18] extends
this approach to more complex hand models, it still relies on
the expensive and tedious collection of human demonstration
data. Fundamentally, it is non-trivial for a data-driven approach
to generalize the learned model to other hand kinematics.

An example that does not fall into either of the above
categories is the popular toolkit of GraspIt! [19]. It generates
grasps by initializing hand pose randomly, squeezing the
fingers as much as possible, and ranking them by a user-
defined grasp metric (e.g., a force closure metric). Although
this method can generate valid grasps, it is highly inefficient
and incapable of generating diverse grasps [20].

A force-closure grasp is a grasp with contact points txi P
R3, i “ 1, ..., nu such that txiu can resist arbitrary external
wrenches with contact forces fi, where fi lies within the
friction cones rooted from xi. The angles of the friction cones
are determined by the surface friction coefficient: The stronger
the friction, the wider the cone. The force-closure metric is,
therefore, irrelevant to the actual hand pose, but only relevant
to the contact points and friction cones. To test whether a
set of contact points form a force-closure grasp, the first step
is solving an optimization problem regarding contact forces
rooted from the points [21, 22]. Although various methods
have been devised, they all require iterations to jointly solve
an auxiliary function, e.g., a support function [23], a bilinear
matrix inequality [24], or a ray shooting problem [25]. As
such, solving force-closure grasps under the constraint of hand
kinematics and force closure is a nested optimization problem.

Various methods were proposed to fast approximate this
optimization problem, including friction cone approximation
with ellipsoids [26] and data-driven force closure estima-
tion [14]. The former method is conceptually similar to this
paper but would slow down exponentially as the number
of contact points increases, whereas our method is more
computationally robust (see Section V-B). The latter method
depends heavily on training data and thus suffers from the
same problems as data-driven grasp synthesis algorithms do.

Human grasps, organized into a grasp taxonomy [5],
provide different levels of power and precision. Most existing
grasp synthesis methods focus on synthesizing power grasp,
either analytical [9–12] or data-driven [7]. At a high cost
of annotating object-centric grasp contact information, some
data-driven approaches [6, 17] demonstrate a certain level of
capability to generate a broader range of grasp types.

III. DIFFERENTIABLE FORCE CLOSURE

Formally, given a set of n contact points txi P R3, i “
1, ..., nu and their corresponding friction cones tpci, µqu,
where ci is the friction cone axis and µ is the friction
coefficient, a grasp is in force closure if there exists contact
forces tfiu at txiu within tpci, µqu such that txiu can resist
arbitrary external wrenches. We follow the notations in Dai et
al. [24] to define a set of contact forces to be force closure if
it satisfies the following constraints:

GG1 ľ εI6ˆ6, (1a)
Gf “ 0, (1b)

fTi ci ą
1

a

µ2 ` 1
|fi|, (1c)

xi P S, (1d)

where S is the object surface, and
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„
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The form of txiuˆ ensures the cross product txiuˆfi “ xiˆ
fi, where f “ rfT1 f

T
2 ...f

T
n s

T P R3n is the unknown variable
of contact forces. In Eq. (1a), ε is a small constant. A ľ B
means A ´ B is positive semi-definite, i.e., it is symmetric,
and all its eigenvalues are non-negative. Eq. (1a) states that G
is full rank. Eq. (1b) states that the contact forces cancel out
each other so that the net wrench is zero. Eq. (1c) prevents
fi from deviating from the friction cone tpci, µqu. Eq. (1d)
constrains contact points to be on the object surface.

Relaxation: Of note, Eq. (1b) is bilinear on xi and fi.
Given a set of contact points txiu, verification of force closure
requires finding a solution of tfiu. The time complexity for
computing such a solution is linear w.r.t. the number of contact
points [24]. Here, we rewrite Eq. (1b) to

Gf “ Gpfn ` ftq “ 0, (4a)

G
fn
}fn}2

“ ´
Gft
}fn}2

, (4b)

Gc “ ´
Gft
}fn}2

, (4c)

where fn and ft are the normal and tangential components
of contact force f in the force closure model, and c “
rcT1 c

T
2 ...c

T
n s

T is the set of friction cone axes. We obtain ci
as the surface normal of the object on xi, which is easily
accessible in many shape representations. We use Gc to
approximate Gf , and therefore relax Eq. (1) to

GG1 ľ εI6ˆ6, (5a)
}Gc}2 ă δ, (5b)

xi P S, (5c)

where δ is the maximum allowed error introduced from our
relaxation. By adopting Eq. (5), we no longer need to solve the
unknown variable f . The constraints of xi becomes quadratic.
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Fig. 2: }Gc}2 residual from Eq. (5b) (y-axis) against minimum
friction coefficient µ0 (x-axis). The violinplot is the distribution
of }Gc}2 residuals of all examples that require a minimum friction
coefficient µ0 to pass the classic force closure test. Overall, these
two values are linearly correlated; }Gc}2 « 4.035µ0.

Hence, the verification of force closure can now be computed
extremely fast. The residual in }Gc}2 reflects the difference
between contact forces and friction cone axes.

To allow gradient-based optimization, we further cast
Eq. (5) as a soft constraint in the form

FCpx,Oq “ λ´0 pGG
1´εI6ˆ6q`}Gc}2`w

ÿ

xiPx

dpxi, Oq, (6)

where λ´0 p¨q “ ReLUp´λ0p¨qq gives the negative part of
the smallest eigenvalue of a matrix, and dpx,Oq returns the
distance from point x to the surface of object O. The scalar w
controls the weight of the distance term. By minimizing the
three terms, we are looking for txiu that satisfies the three
constraints in Eq. (5), respectively.

Implications of Assumptions: Using surface normal vec-
tors to approximate contact forces implies zero friction and
equal magnitude contact forces. Such an assumption may
seem to eliminate a large pool of force-closure contact-point
compositions. In practice, however, this is not the case: A
residual in }Gc}2 indicates that the existence of friction ft
and difference in force magnitude fn on contact forces. By
allowing the residual to be smaller than a reasonable threshold
δ, we allow the tangential and normal components of the
contact forces to deviate within a reasonable range.

To further verify our interpretation, we randomly sample
500,000 grasps, each containing three contact points on the
surface of a unit sphere. For each grasp, we compute the min-
imum friction coefficient µ0 required for the grasp to satisfy
the classic force closure constraints described in Eq. (1). Fig. 2
plots the residual }Gc}2 from Eq. (5b) against µ0; it shows an
almost linear relation between µ0 and }Gc}2.

Force-closure Contact-point Generation: By directly min-
imizing the soft force closure constraint, we can synthesize
force closure contact points with arbitrary shapes. Specifically,
we run gradient descent on contact point positions x to
minimize Eq. (6). Fig. 3 shows the computed contact points on
a unit sphere and some daily objects. Despite our assumptions,
minimizing our force closure estimation can indeed properly
generate force-closure contact points.

Fig. 3: Force-closure contact-point generations on unit spheres
(top) and daily objects (bottom) by minimizing Eq. (6). Objects
in each columns have 3, 4, and 5 contact points, respectively.

IV. GRASP SYNTHESIS

In this section, we first describe how to leverage our
differentiable force closure estimator to formulate a probability
distribution of grasping. Next, we devise an optimization
algorithm to sample diverse grasps from the distribution.

Formulation: We formulate the grasp synthesis problem as
sampling from a conditional Gibbs distribution:

P pH|Oq “
P pH,Oq

P pOq
9P pH,Oq “

1

Z
exp´EpH,Oq, (7)

where Z denotes the intractable normalizing constant, H the
hand, O the object, and EpH,Oq the energy function. We
rewrite EpH,Oq as the minimum value of the energy function
EgrasppH,x,Oq w.r.t. contact point choices x:

EpH,Oq “ min
xĂSpHq

EgrasppH,x,Oq

“ min
xĂSpHq

FCpx,Oq ` EpriorpHq ` EpenpH,Oq,
(8)

where SpHq is a set of points sampled uniformly from the
surface of a hand with pose H . We denote the selected
contact points from hand surface as x Ă SpHq. FCpx,Oq
is the soft constraint from Eq. (6). EpriorpHq is the en-
ergy prior of the hand pose. Its exact form depends on
the hand definition. The penetration energy is defined as
EpenpH,Oq “

ř

vPSpHq σpv,Oq, where σpv,Oq is a modified
distance function between a point v and an object O:

σpv,Oq “

#

0 if v outside O
|d| otherwise

, (9)

where d is the distance from v to surface of O.
Algorithm: Due to the complexity of human hand kinemat-

ics, our grasp energy suffers from a complex energy landscape.
A naı̈ve gradient-based optimization algorithm is likely to stop
at sub-optimal local minima. We use a modified Metropolis-
adjusted Langevin algorithm (MALA) to overcome this issue;
see the algorithm details in Algorithm 1. The random walk
aspect of Langevin dynamics provides the chance of escaping
bad local minima. Our algorithm starts with random initializa-
tion of hand pose H and contact points x Ă SpHq. Next, we
run our algorithm L iterations to update H,x and maximize
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P pH,Oq. In each iteration, our algorithm randomly decides
to update either the hand pose by Langevin dynamics or one
of the contact points to a point uniformly sampled from the
hand surface. The updates are accepted or rejected according
to the Metropolis-Hastings algorithm, in which a lower-energy
update is more likely to be accepted than a higher-energy one.

Algorithm 1: Modified MALA Algorithm
Input: Energy function Egrasp, object shape O, step size η,

Langevin steps L, switch probability ρ
Output: grasp parameters H,x

1 Initialize H,x
2 for step “ 1 : L do
3 if randpq ă ρ then
4 Propose H˚ according to Langevin dynamics

H˚
“ H ´

η2

2

B

BH
EgrasppH,x,Oq ` ηε,

where ε „ Np0, 1q is a Gaussian noise
5 else
6 Propose x˚ by sampling from SpHq
7 end
8 Accept H Ð H˚, xÐ x˚ by Metropolis-Hastings

algorithm using energy function Egrasp

9 end

Of note, different compositions of contact points correspond
to different grasp types as they contribute to some of the
classification basis of the grasp taxonomy, including virtual
finger assignment and opposition type. Hence, sampling con-
tact points on Line 6 in Algorithm 1 is crucial for exploring
different types of grasps. In practice, we also empirically find
that this step is essential for escaping bad local minima.

V. SIMULATION

We detail experimental setup with analysis in simulation.

A. Simulation Setup

Hand Model: We use MANO [27] to model the hu-
manoid hand. It is a parameterized 3D hand shape model that
maps low-dimensional hand poses to 3D human hand shapes.
We use the norm of the PCA weights of the hand pose as
EpriorpHq. Since MANO vertices are distributed uniformly
across the hand surface, we sample points from the hand
surface by directly sampling from MANO vertices.

Object Model: We use the DeepSDF model [28] to model
the objects to be grasped. DeepSDF is a densely connected
neural network that implicitly represents the shape surface
and estimates the signed distance from a position to an object
surface; the signed distance is negative if the point is inside the
object, and vice versa. The 0-level set composes the surface
of the object. We obtain the object surface normal by taking
the derivative of the signed distance w.r.t. the input position.

We test our grasp synthesis algorithm on various bottles
retrieved from ShapeNet dataset [29]. Given the pre-trained
DeepSDF model of an object, we randomly initialize a MANO
hand and use Algorithm 1 to sample the hand pose and contact
points from P pH|Oq. We set the step size η “ 0.1, switch
probability ρ “ 0.85, distance weight w “ 1, and Langevin
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Fig. 4: Boxplot and log-linearly fitted curve of the runtime of
Eq. (6) w.r.t. to the number of contact points. We run a simulated
test of force closure with 3, 5, 10, 20, 100, and 1000 contact points
for 1,000 iterations. X-axis is the number of contact points in log
scale. Y-axis is the runtime of our force closure error estimate. The
shaded area denotes the 95% confidence interval. The light blue line
denotes that the estimated relation between the FC runtime t and the
number of contact points n is t « 0.107ˆ log10 n` 1.502.

steps L “ 106. We filter out samples in bad local minima by
keeping samples that satisfy following empirical constraints:

}Gc}2 ă 0.5 (10a)
ÿ

xiPx

dpxi, Oq
2 ă 0.02 (10b)

EpenpH,Oq ă 0.02 (10c)

where x is the set of contact points on the hand surface, and
c the friction cone axes at contact points.

B. Runtime Analysis

Fig. 4 shows the time complexity of testing force closure
using Eq. (6) and our simulation setup, wherein we further
fit a log-linear curve of the running time w.r.t. the number of
contact points. Each test takes 1-2ms to run on an NVIDIA
3090 GPU, significantly faster than the exact solution [24]. We
also observe that roughly 80% of the total runtime is spent at
the computation of surface normal; this operation is particu-
larly slow because it takes a derivative of the DeepSDF model.
Taken together, these empirical results in simulation indicate
that a further improvement in runtime efficiency would be
achievable with a more computationally tractable object shape
representation, an interesting future research direction.

We further examine the efficiency of Algorithm 1 under dif-
ferent settings in Fig. 5. We synthesize 512 examples for 104

steps under each setting and count the number of successful
synthesis results that satisfy Eq. (10) at each step. We observe
that the algorithm is more likely to succeed with a smaller
search space of contact point selection (less contact points and
less candidates) and with simpler object shapes. For complex
shapes such as bottles, our method only produced 5 successful
syntheses after 104 steps, and the first acceptable synthesis
emerged at 1047th step. On average, each step takes 224.4ms
for bottles, of which over 200ms is spent on computing the
gradient of the force closure estimate—it involves computing
the second-order derivative of the DeepSDF function.
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Fig. 5: Runtime analysis of grasp synthesis. (a) Grasp spheres with
3 contact point candidates (one on each fingertip) and 773 candidates
(uniformly distributed over entire hand surface). (b) Grasp spheres
with 3, 5, and 8 contact points. (c) Grasp spheres and ShapeNet
bottles with 3 contact points.

C. Refinement

While our modified MALA algorithm can produce real-
istic results, we still observe physical inconsistencies in the
synthesized examples such as penetrations and gaps between
contact points and object surface. To resolve these issues, we
further refine the synthesized results by minimizing Egrasp

using gradient descent on H . We do not update the contact
point selection x in this step, since we hope to focus on
optimizing the physical consistency in this step rather than
exploring the grasp landscape for diverse grasp types.

VI. RESULTS

We showcase our method’s capabilities in simulation.

A. Grasp Synthesis

Fig. 6 shows synthesis results with and without the re-
finement step: Higher values of our force closure estimation
corresponds to non-grasps, whereas force closure estimations
close to zero are as good as the ones with force closure
estimations equal to zero. This observation confirms our
previous analysis. We also notice cases when the synthesis
is trapped in bad local minima; we show two examples in the
last column of Fig. 6. These examples exhibit large values in
our force closure estimator, which happened due to the non-
convexity of the optimization problem; one cannot avoid every
bad minimum with gradient-based methods. Fortunately, we
can identify these examples by their high force closure scores.

B. Physical Stability

We verify the physical stability of our synthesized examples
by simulating the samples in PyBullet. Specifically, we set
gravity to be r0, 0,´10sm{s´2 and use the default values of
friction coefficients in PyBullet. We assumed both the hand
and the object to be rigid bodies. An example is deemed to
be a successful grasp if the object’s vertical drop is less than
0.3m after 1000 steps of simulation, or 16.67s.

A grasp’s physical stability depends on the force closure
score of the contact points and whether the contact points are
close enough to the object surface. We set two thresholds on
the contact point distance; Table I tabulates detailed compar-
isons of the success rate between our method against state-
of-the-art algorithms: To our best knowledge, Przybylski et

TABLE I: Grasp success rates:
ours vs. state-of-the-art methods

method success rate

Unions of Balls [30] 72.53%
Visuo-Haptic [31] 85.00%
Ours (σ ă 0.0015) 76.98%
Ours (σ ă0.0005) 85.00%

al. [30] is the state-of-the-art analytic approach, whereas Ot-
tenhaus et al. [31] is the state-of-the-art data-driven approach.

Of note, although Ottenhaus et al. [31] reported 95% suc-
cess rate in the original paper, many of the objects being tested
have simple shapes, such as a sphere or a box; the success rate
would drop to 85% when we remove these simple objects.
Additionally, neither of the two state-of-the-art methods has
demonstrated the ability to synthesize diverse types of grasps.
Although some other data-driven methods have demonstrated
a certain level of diverse grasp synthesis, they fail to report
their physical stability as it is not their primary focus.

C. Diversity of the Grasp Types

To evaluate the diversity of the grasps generated by the
proposed method, we examine the energy landscape of our
grasp energy function; we use ADELM algorithm [32] to
build the energy landscape mapping of our grasps energy
function EpH,Oq. Below, we show that grasps defined by
our energy function loosely aligns with the carefully defined
grasps taxonomy [5] when applied to humanoid hands.

Specifically, we collected 371 synthesized grasp examples
and adopted the ADELM algorithm [32] to find minimum
energy pathways (MEPs) between them. We project the MEPs
between examples to a disconnectivity graph in Fig. 7. In
the disconnectivity graph, each circle at the bottom represents
a local minima group. The size of the circle indicates how
many synthesized examples fall into this group. The height
of the horizontal bar between two groups represent the max-
imum energy (or energy barrier) along the MEPs between
two groups. The MEPs with lowest barriers connect smaller
groups into larger groups, and this process is repeated until all
examples are connected. The produced disconnectivity graph
is an estimation of the true landscape of the energy function.
Energy landscape mapping in Fig. 7 shows that the local
minima with low energy barriers between them have similar
grasps, and those with high energy barriers between them
tend to have different grasps. We also observe that the energy
landscape contains all three categories in the power and the
precision dimension as described in Feix et al. [5].

To provide a more comprehensive understanding of the
alignment between our energy landscape and the existing
taxonomy, we further plot the local minima groups as a 2D
graph in Fig. 8, which supplements the 1D energy landscape
shown in Fig. 7. In Fig. 8, each node represents a local minima
group. We arrange the nodes so that groups with low energy
barriers between them are placed closer to each other. The
edges between nodes also indicate the energy barriers: Thicker
edges indicate lower barriers, and no edge between two nodes
means no pathway between the two groups is formed.
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SD=0.0323
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(f)
FC=1.2294
SD=0.0053

with
refinement

(g)
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(h)
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SD=0.0022

(i)
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SD=0.0015
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(k)
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(l)
FC=1.1509
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Fig. 6: Examples of synthesized grasps. Top: synthesized grasps before refinement. Bottom: the same set of synthesized grasps after
refinement. FC: estimated force closure error. SD: mean distance from each contact point to the object surface. Left to right: examples with
zero FC error, small FC error, and high FC error qualitatively illustrate how our estimation of force closure correlates to grasp quality.
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Fig. 7: Energy landscape mapping generated by the ADELM algorithm [32]; best viewed in color. Top: disconnectivity diagram of
the energy landscape of our energy function EpH,Oq. Green minima denote precision grasps, red power grasps, and yellow intermediate
grasps. Bottom: examples from selected local minima; minima with lower energy barriers in between have similar grasps. We also label the
grasp taxonomy of each example according to Feix et al. [5]. Examples marked as unlisted do not belong to any manually classified type.

Specifically, Fig. 8a shows that the power grasps and pre-
cision grasps are mostly separate from each other, indicating
a high energy barrier between the two. One interpretation is
that there is no smooth transition between a power grasp and
a precision grasp without a non-force-closure grasp along the
transition. Intermediate grasps are scattered around. Nodes that
are not colored are grasp types not listed in any existing grasp
taxonomy, indicating the manually-defined grasp taxonomy,

though carefully collected and designed, may still fall short
when facing a large variety of grasps in various applications.

In Fig. 8b, we draw various types of power grasps in
different colors. Only the power grasps close to the precision
grasps belong to the power sphere type. This observation
matches our intuition as a power sphere grasp is similar to a
precision sphere grasp, with a slight difference in the distance
between the object and the palm. In other words, there exists



LIU et al.: EFFICIENT SYNTHESIS OF DIVERSE AND PHYSICALLY STABLE GRASPS 7

(a) Red: power grasps. Yellow: intermediate grasps.
Green: Precision grasps. Other: Unlisted.

(b) Red: power sphere grasps. Yellow: power disk
grasp. Green: power cylinder grasps (large diame-
ter, medium wrap, small diameter)

(c) Red: power/precision sphere grasps. Yellow:
tri/quad-pod grasps.

Fig. 8: Alignment between our energy landscape and existing grasp taxonomy [5]; best viewed in color.

Fig. 9: Examples of novel grasp poses. To the best of our knowledge,
these newly discovered grasp poses do not correspond to any grasp
types in existing human-designed grasp taxonomy (e.g., [6, 20]).

a smooth transition between a precision sphere grasp and a
power sphere grasp, such that all snapshots along the transition
are force-closure grasps. Please refer to Feix et al. [5] for
details about the power and precision sphere grasps.

In Fig. 8c, we observe that sphere grasps and tri- or quad-
pod grasps are close to each other. This observation is also
expected since many sphere grasps can be converted to tri- or
quad-pod grasps by merely lifting one or two fingers.

We further demonstrate that our algorithm can find natural
but novel grasps in Fig. 9. These grasps are rarely collected in
any of the modern 3D grasp datasets (e.g., [6, 20]), since they
do not belong to any type as defined in the grasp taxonomy.
However, these grasps are valid grasps and could well exist
during physical manipulations. For example, the left example
in Fig. 9 is commonly used to twist-open a bottle when some
of the fingers are occupied or injured. The second example
would occur if one is already holding something (e.g., a ball)
in the palm while picking up another bottle-like object.

These grasps occur because the human hand is excellent
in doing multiple tasks simultaneously, which have not been
recognized or explored in grasp literature as we always
assumed otherwise. Such limitation would hinder a robotic
hand’s capacity from developing to its full potential. Our
method paves the way to explore grasp types beyond the grasp
taxonomy, which is a crucial step toward exploiting the total
capacity of a complex hand structure such as human hands.

D. Grasp Synthesis for Arbitrary Hand Structures

Although above experiments primarily rely on MANO for
hand modeling and grasp taxonomy, our method in fact makes
no assumption on the hand kinematics except for having a
differentiable mapping between pose and shape. As a result,
we can synthesize grasps for arbitrary hand so long as there
exists such a mapping. In Fig. 10, our method, without

modifications, can directly synthesize grasps of a MANO
hand with its thumb removed and a Robotiq 3-finger gripper.
Specifically, for the 3-finger gripper, we used a differentiable
forward kinematics [33] as the mapping from joint states to
the hand shape. These examples demonstrate that our method
can explore a wide range of grasps for arbitrary hand structure,
which could provide valuable insights for understanding the
task affordance of prosthetic or robotic hands, and hands
with injuries or disabilities. Our method is also applicable to
animations for grasps of non-standard hands or claws.

E. Limitations

We show two representative failure cases in Fig. 11, wherein
an unstable or unrealistic grasp receives a low force closure
score. In our experiment, most failure cases are caused by con-
cavities in object shapes. For concave shapes, the force closure
requirement is sometimes satisfied with a single finger in the
concavity, providing contact forces in opposing directions. The
issue may be eliminated with manually defined heuristics, such
as enforcing contact points on different fingers or encouraging
contact points to have larger distances between each other.
Another common failure comes from model intersections. We
test penetration by computing the signed distance between
hand surface vertices and the object shape. When the vertices
are sparse, or the object has a pointy part, it is possible for the
object to penetrate the hand without being detected. This issue
can be addressed with a dense sample of hand surface vertices
or by adopting a differentiable mesh intersection algorithm.

Another primary limitation of our approach lies in the gap
between the simulation and the reality. Our algorithm assumes
perfect knowledge of the object shape and its signed distance
field. Inferring such properties from perception is non-trivial.
We plan to address this issue in future studies.

VII. CONCLUSION

We formulated a fast and differentiable approximation of the
force closure test computed within milliseconds, which enables
a new grasp synthesis algorithm. In a series of experiments,
we verified that our force closure estimator correctly reflects
the quality of a grasp, and demonstrated the proposed grasp
synthesis algorithm could generate diverse and physically
stable grasps with arbitrary hand structures. The diversity of
the generated grasps is validated by its alignment with widely
accepted grasp taxonomy with newly discovered grasp types.
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Fig. 10: Synthesized grasps of different hands using our formulation. Top: A MANO hand with its thumb removed. Bottom: A Robotiq
3-finger gripper. The left-most figure shows the hand used in each row.

(a) (b)

Fig. 11: Examples of failure cases. (a) Concave shape results in
force closure configuration that is not a grasp. (b) Sparse penetration
detection leads to intersection.

We believe that exploring different grasp types is crucial
for future work of understanding the hand’s total functional
capacity, whether it is a prosthetic hand, a robotic hand, or an
animated character’s hand.
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