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1. Autonomous Skill Acquisition

Autonomous skill acquisition is pivotal as they adapt to changing tasks and
environments, moving robot from factory into our daily lives.

Task: Learning novel manipulation skills without any expert input.

Challenges: Visual and kinematics gaps prevent learning from human demos.

Dexterous manipulation requires high precision in planning and execution.
Ag2Manip as the solution:

* Generalizable agent-agnostic visual and action representations for robotic
manipulation.

3. Extensive Evaluations

» 78.7% success, far surpassing baselines (18.5%) across 24 tasks.

* Real-world experiments validate our representation in few-shot IL. Performance: Ag2Manip has a 78.7% overall success rate (3x baseline increase),
benefiting from its agent-agnostic representations - See Tab. I.
2. Framework of Ag2Manip Task Progress Consistency: The proposed agent-agnostic visual representation
(a) Learning agent-agnostic visual representation from Epic-Kitchen. demonstrates greater consistency in capturing task progress - See Tab. II.
We first mask and inpaint humans in Epic-Kitchen videos to eliminate the visual Real-world Imitation: In few-shot real-world imitation learning, our visual
bias towards human. Then, we learn an encoder ¥, that maps RGB images to representation shows superior efficiency over the baselines = See Tab. IIl.

latent embeddings that capture task progress through time-contrastive loss:
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(c) Retargeting the Abstracted Skills to a Specific Robot with IK. Table II: Task progress consistency Table 1ll: Experimental Results
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Conclusion

 Ag2Manip can acquire various robot manipulation skills without expert demonstrations.

 Ag2Manip leverages innovative agent-agnostic visual and action representations to bridge domain gaps and
address precision challenges in robotic manipulation learning.

e Extensive simulated and real-world experiments show its effectiveness in autonomous skill acquisition.
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