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Employing a relay-training paradigm, two synergistic modules cooperate to facilitate the
manipulation of objects typically considered ungraspable. A W pre-grasping ¥ srasping 45 076 1 pre-orasping 0 026 65 075 4 gmaspiop |
. . . O point proposal proposal | W affordance W affordance |
* Pre-grasping module: assessing environmental features such as edges, slopes, slots, and walls Ve m e e e o e T e e i ’
to propose strategic pre-grasping actions that enhance the likelihood of a successful grasp.

* Grasping module: evaluating these actions and provides feedback in the form of rewards,

which are used to refine and optimize the pre-grasping strategies.

We demonstrate pre-grasping manipulation on training and testing categories in four scenarios—
edge, slot, slope, and wall. Affordance maps highlight effective interaction areas, showing
PreAfford’s capability to devise suitable pre-grasping and grasping strategies for various object
categories and scenes, including both seen and unseen objects.
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But by repositioning the object before S P s 08 p S

grasping, and leveraging environmental W/o pre-grasping 23 38 43 34 40 36 6.1 23 29 57 60 46

. . ¥ Random-direction Push 21.6 103 6.4 16.8 18.1 14.6 249 172 12.1 184 23.0 19.1
features like Edge, Slot, Slope, Wall, the object becomes graspable. Center-point Push 32,5 23.7 40.5 392 39.0 350 25.1 174 280 302 21.5 24.4

This pre-manipulation on objects for easier grasping is called pre-grasping. Ours w/o closed-loop 67.2 41.5 583 769 63.6 61.5 564 373 626 758 554 57.5
Ours 31.4 434 73.1 835 74.1 71.1 83.7 47.6 80.5 83.0 74.6 73.9
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object categories, split into five known and five o A
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Pre-grasping and grasping are managed by the pre-grasping module and the grasping module, 5 5 5 “ 5 (e) Wall with edge.
respectively. Within each module, three specialized neural networks are employed: an L

Experimental results show over 70 percent (b) Multi-scene setup with three envi-
. . ronmental features. Hardware includes an
improvement on success rate of grasping AIRBOT Play robotic arm, an INSPIRE-

manipulation in both seen and unseen categories. ROBOTS gripper, and a Femto Bolt RGB-D'_‘

affordance network A, a proposal network P, and a critic network C.

Grasping network is trained first with following loss function, enabling critic network to judge P—_— (f) Edge.
success likelihood of grasping manipulation. 7 = 1 in a successful grasp, otherwise r = 0.
o~ — : Seen categories Unseen categories
Le, =1 log(Ca(p2, 02)) + (1 —7) log(1 —Ca(p2, 62)). Setting | |
edge wall slope slot multi avg. edge wall slope slot multi avg.
The training label for pre-grasping critic network is generated by the grasping module, which W/o pre-grasping 0 0 0 0 0 0 10 0 5 0 0 3
we refer to as relay-training. ’CE) efore and e;’fter are the success likelihood of grasping With pre-grasping 70 45 0 90 85 74 80 30 75 90 85 72

manipulation evaluated by grasping module, evaluating the increase of graspability with the pre-
grasping manipulation. p is a penalty term introduced for safety reasons.
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