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A MODEL DETAILS

Dependency Parsing Fig. A1 illustrate the process of parsing an arithmetic expression via the
dependency parser. Formally, a state c “ pα, β,Aq in the dependency parser consists of a stack
α, a buffer β, and a set of dependency arcs A. The initial state for a sequence s “ w0w1...wn is
α “ rRoots, β “ rw0w1...wns, A “ H. A state is regarded as terminal if the buffer is empty and
the stack only contains the node Root. The parse tree can be derived from the dependency arcs A.
Let αi denote the i-th top element on the stack, and βi the i-th element on the buffer. The parser
defines three types of transitions between states:

• LEFT-ARC: add an arc α1 Ñ α2 to A and remove α2 from the stack α. Precondition: |α| ě 2.
• RIGHT-ARC: add an arc α2 Ñ α1 to A and remove α1 from the stack α. Precondition: |α| ě 2.
• SHIFT: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state.
The parser predicts one transition from T “ tLEFT-ARC, RIGHT-ARC, SHIFTu at a time, based
on the current state c “ pα, β,Aq. The state representation is constructed from a local window
and contains following three elements: (i) The top three words on the stack and buffer: αi, βi, i “

1, 2, 3; (ii) The first and second leftmost/rightmost children of the top two words on the stack:
lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i “ 1, 2; (iii) The leftmost of leftmost/rightmost of rightmost
children of the top two words on the stack: lc1plc1pαiqq, rc1prc1pαiqq, i “ 1, 2. We use a special
Null token for non-existent elements. Each element in the state representation is embedded to
a d-dimensional vector e P Rd, and the full embedding matrix is denoted as E P R|Σ|ˆd, where
Σ is the concept space. The embedding vectors for all elements in the state are concatenated as
its representation: c “ re1 e2...ens P Rnd. Given the state representation, we adopt a two-layer
feed-forward neural network to predict the transition.

Program Induction Program induction, i.e., synthesizing programs from input-output examples,
was one of the oldest theoretical frameworks for concept learning within artificial intelligence
(Solomonoff, 1964). Recent advances in program induction focus on training neural networks to
guide the program search (Kulkarni et al., 2015; Lake et al., 2015; Balog et al., 2017; Devlin et al.,
2017; Ellis et al., 2018a;b). For example, Balog et al. (2017) train a neural network to predict
properties of the program that generated the outputs from the given inputs and then use the neural
network’s predictions to augment search techniques from the programming languages community.
Ellis et al. (2021) released a neural-guided program induction system, DreamCoder, which can
efficiently discover interpretable, reusable, and generalizable programs across a wide range of
domains, including both classic inductive programming tasks and creative tasks such as drawing
pictures and building scenes. DreamCoder adopts a “wake-sleep” Bayesian learning algorithm to
extend program space with new symbolic abstractions and train the neural network on imagined and
replayed problems.

To learn the semantics of a symbol c from a set of examples Dc is to find a program ρc composed
from a set of primitives L, which maximizes the following objective:

max
ρ

ppρ|Dc, Lq 9 ppDc|ρq ppρ|Lq, (A1)

where ppDc|ρq is the likelihood of the program ρ matching Dc, and ppρ|Lq is the prior of ρ under
the program space defined by the primitives L. Since finding a globally optimal program is usually
intractable, the maximization in Eq. (A1) is approximated by a stochastic search process guided by a
neural network, which is trained to approximate the posterior distribution ppρ|Dc, Lq. We refer the
readers to DreamCoder (Ellis et al., 2021)1 for more technical details.

1https://github.com/ellisk42/ec
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B LEARNING

Derivation of Eq. (5) Take the derivative of L w.r.t. θp,

∇θpLpx, yq “ ∇θp log ppy|xq “
1

ppy|xq
∇θpppy|xq

“
ÿ

T

ppT, y|x; Θq
ř

T 1 ppT 1, y|x; Θq
∇θp log pps|x; θpq

“ET„ppT |x,yqr∇θp log pps|x; θpqs.

(A2)

Similarly, for θs, θl, we have

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,
(A3)

Deduction-Abduction Alg. A1 describes the procedure for learning NSR by the proposed
deduction-abduction algorithm. Fig. 3 illustrates the one-step abduction over perception, syntax, and
semantics in HINT and Fig. A2 visualizes a concrete example to illustrate the deduction-abduction
process. It is similar for SCAN and PCFG.

C EXPRESSIVENESS AND GENERALIZATION OF NSR

Expressiveness
Lemma C.1. Given a finite unique set of txi : i “ 0, ..., Nu, there exists a sufficiently capable
neural network fp such that: @xi, fppxiq “ i.

This lemma asserts the existence of a neural network capable of mapping every element in a finite set
to a unique index, i.e., xi Ñ i, as supported by (Hornik et al., 1989; Lu et al., 2017). The parsing
process in this scenario is straightforward, given that every input is mapped to a singular token.
Lemma C.2. Any index space can be constructed from the primitives t0,incu.

This lemma is grounded in the fact that all indices are natural numbers, which can be recursively
defined by t0,incu, allowing the creation of indices for both inputs and outputs.

Generalization Equivariance and compositionality are formalized utilizing group theory, following
the approaches of Gordon et al. (2019) and Zhang et al. (2022). A discrete group G comprises elements
tg1, ..., g|G|u and a binary group operation “¨”, adhering to group axioms (closure, associativity,
identity, and invertibility). Equivariance is associated with a permutation group P , representing
permutations of a set X . For compositionality, a composition operation C is considered, defining
Tc : pX ,X q Ñ X .

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program
induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transforma-
tions based on their formulations. Eqs. (1) to (3) demonstrate that in all three modules of the NSR
system, the joint distribution is factorized into a product of several independent terms. This factoriza-
tion process makes the modules naturally adhere to the principles of equivariance and recursiveness,
as outlined in Definitions 3.1 and 3.2.

D EXPERIMENTS

D.1 EXPERIMENTAL SETUP

For tasks taking symbols as input (i.e., SCAN and PCFG), the perception module is not required in
NSR; For the task taking images as input, we adopt ResNet-18 as the perception module, which is
pre-trained unsupervisedly (Van Gansbeke et al., 2020) on handwritten images from the training set.
In the dependency parser, the token embeddings have a dimension of 50, the hidden dimension of
the transition classifier is 200, and we use a dropout of 0.5. For the program induction, we adopt the
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default setting in DreamCoder (Ellis et al., 2021). For learning NSR, both the ResNet-18 and the
dependency parser are trained by the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
10´4. NSR are trained for 100 epochs for all datasets.

Compute All training can be done using a single NVIDIA GeForce RTX 3090Ti under 24 hours.

D.2 ABLATION STUDY

To explore how well the individual modules of NSR are learned, we perform an ablation study on
HINT to analyze the performance of each module of NSR. Specifically, along with the final results,
the HINT dataset also provides the symbolic sequences and parse trees for evaluation. For Neural
Perception, we report the accuracy of classifying each symbol. For Dependency parsing, we report
the accuracy of attaching each symbol to its correct parent, given the ground-truth symbol sequence
as the input. For Program Induction, we report the accuracy of the final results, given the ground-truth
symbol sequence and parse tree.

Overall, each module achieves high accuracy, as shown in Tab. A1. For Neural Perception, most
errors come from the two parentheses, ”(” and ”)”, because they are visually similar. For Dependency
Parsing, we analyze the parsing accuracies for different concept groups: digits (100%), operators
(95.85%), and parentheses (64.28%). The parsing accuracy of parentheses is much lower than those of
digits and operators. We think this is because, as long as digits and operators are correctly parsed in the
parsing tree, where to attach the parentheses does not influence the final results because parentheses
have no semantic meaning. For Program Induction, we can manually verify that the induced programs
(Fig. 4) have correct semantics. The errors are caused by exceeding the recursion limit when calling
the program for multiplication. The above analysis is also verified by the qualitative examples in
Fig. A3.

D.3 QUALITATIVE EXAMPLES

Figs. A3 and A4 show several examples of the NSR predictions on SCAN and HINT.

Fig. A5 illustrates the evolution of semantics along the training of NSR in HINT. This pattern is
highly in accordance with how children learn arithmetic in developmental psychology (Carpenter
et al., 1999): The model first masters the semantics of digits as counting, then learns ` and ´ as
recursive counting, and finally figures out how to define ˆ and ˜ based on ` and ´. Crucially, ˆ

and ˜ are impossible to be correctly learned before mastering ` and ´. The model is endowed with
such an incremental learning capability since the program induction module allows the semantics of
concepts to be built compositionally from those learned earlier (Ellis et al., 2021).
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ID Stack Buffer Transition Dependency
0 3 + 4 × 2 Shift
1 3 + 4 × 2 Shift
2 3 + 4 × 2 Left-Arc 3 ← +
3 + 4 × 2 Shift
4 + 4 × 2 Shift
5 + 4 × 2 Left-Arc 4 ←×
6 + × 2 Shift
7 + × 2 Right-Arc ×→ 2
8 + × Right-Arc +→×

3 + 4×2
+

3 ×

4 2

Figure A1: Applying the transition-based dependency parser to an example of HINT. It is similar for SCAN
and PCFG.
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Figure A2: An illustration of the deduction-abduction process for an example of HINT. Given a handwritten
expression, the system performs a greedy deduction to propose an initial solution, generating a wrong result. In
abduction, the root node, paired with the ground-truth result, is first pushed to the priority queue. The abduction
over perception, syntax, and semantics is performed on the popped node to generate possible revisions. A
top-down search is also applied to propagate the expected value to its children. All possible revisions are then
pushed into the priority queue. This process is repeated until we find the most likely revision for the initial
solution.
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Test subset I

Test subset SS

Test subset SL

Test subset LS

Test subset LL

GT: (7+9/2)/3/8 = 1 PD: (7+9/2)/3/8 = 1 GT: 2/5-(0-1/6)/(8+2) = 1 PD: 2/5-(0-1/6(/(8+2) = 1

GT: (3-1-(3-2))/(0+5) = 1 PD: (3-1-(3-2()/(0+5( = 1 GT: 3*(4-0+(6+(0*6-9))-6) = 12 PD: 3*(4-0+(6+(0*6-9))-6) = 24

GT: 9*(9+8)*3-9/8 = 457 PD: 9*(9+8)*3-9/8 = 457 GT: (8*7*6+(3-0)/2*8)*7 = 2464 PD: (8*7*6+(3-0)/2*8)*7 = 448

GT: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)+(9+3)-0) = 2 PD: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)/(9+3)-0) = 24

GT: (8/5+(1+5))*(4+5*0)-(7/(9*8)+1-3/(7+0)) = 31 PD: (8/5+(1+5)(*(4+5*0)-(7/(9*8)+1-3/(7+0() = 31

Figure A3: Examples of NSR predictions on the test set of HINT. “GT” and “PD” denote “ground-truth” and
“prediction,” respectively. Each node in the tree is a tuple of (symbol, value).
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run around left twice and run around right

run 3 [RUN]

left 5 [LTURN, RUN]

and 11 [LTURN, RUN] * 8 + [RTURN, RUN] * 4

around 8 [LTURN,RUN] * 4

twice 9 [LTURN, RUN] * 8

run 3 [RUN]

right 6 [RTURN, RUN]

around 8 [RTURN, RUN] * 4

walk opposite right thrice after look around left twice

walk 1 [WALK]

right 6 [RTURN, WALK]

after 12 [LTURN, LOOK] * 8 + [RTURN, RTURN, WALK] * 3

opposite 7 [RTURN, RTURN, WALK]

thrice 10 [RTURN, RTURN, WALK] * 3

look 2 [LOOK]

left 5 [LTURN, LOOK]

around 8 [LTURN, LOOK] * 4

twice 9 [LTURN, LOOK] * 8

Figure A4: Examples of NSR predictions on the test set of the SCAN LENGTH split. We use * (repeating the
list) and + (concatenating two lists) to shorten the outputs for easier interpretation.

# Training epochsmaster counting master + and − master × and ÷
0: Null
1: Null
2: Null
…
9: Null
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, +(inc 𝑥, dec 𝑦)) 
−: if (𝑦 == 0, 𝑥, +(dec 𝑥, dec 𝑦))
×: if (𝑦 == 0, 𝑦, 𝑥)
÷: if (𝑦 == inc 0, 𝑥, if (𝑥 == 0, 𝑥, inc inc 0))

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, (inc 𝑥) + (dec 𝑦)) 
−: if (𝑦 == 0, 𝑥, (dec 𝑥) + (dec 𝑦))
×: if (𝑥 == 0, 0, 𝑦 × (dec 𝑥) + 𝑦)
÷: if (𝑥 == 0, 0, inc ( 𝑥 − 𝑦 ÷ 𝑦))

Figure A5: The evolution of learned programs in NSR for HINT. The recursive programs in DreamCoder are
represented by lambda calculus (a.k.a. λ-calculus) with Y-combinator. Here, we translate the induced programs
into pseudo code for easier interpretation. Note that there might be different yet functionally-equivalent programs
to represent the semantics of a symbol; we only visualize a plausible one here.
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Table A1: Accuracy of the individual modules of NSR on the HINT dataset.

Module Neural Perception Dependency Parsing Program Induction

Accuracy 93.51 88.10 98.47

Table A2: The test accuracy on different splits of SCAN and PCFG. The results of NeSS on PCFG are
reported by adapting the source code from Chen et al. (2020) on PCFG. Reported accuracy (%) is the average of
5 runs with standard deviation if available.

models SCAN PCFG

SIMPLE JUMP AROUND RIGHT LENGTH i.i.d. systematicity productivity

Seq2Seq (Lake and Baroni, 2018) 99.7 1.2 2.5 13.8 79 53 30
CNN (Dessı̀ and Baroni, 2019) 100.0˘0.0 69.2˘8.2 56.7˘10.2 0.0˘0.0 85 56 31

Transformer (Csordás et al., 2021) - - - 20.0 - 96˘1 85˘1
Transformer (Ontanón et al., 2022) - 0.0 - 19.6 - 83 63

equivariant Seq2seq (Gordon et al., 2019) 100.0 99.1˘0.04 92.0˘0.24 15.9˘3.2 - - -
NeSS (Chen et al., 2020) 100.0 100.0 100.0 100.0 «0 «0 «0

NSR (ours) 100.0˘0.0 100.0˘0.0 100.0˘0.0 100.0˘0.0 100˘0 100˘0 100˘0

Table A3: The test accuracy on HINT. We directly cite the results of GRU, LSTM, and Transformer from Li
et al. (2023b). The results of NeSS are reported by adapting its source code on HINT. Reported accuracy (%) is
the median and standard deviation of 5 runs.

Model Symbol Input Image Input

I SS LS SL LL Avg. I SS LS SL LL Avg.

GRU 76.2˘0.6 69.5˘0.6 42.8˘1.5 10.5˘0.2 15.1˘1.2 42.5˘0.7 66.7˘2.0 58.7˘2.2 33.1˘2.7 9.4˘0.3 12.8˘1.0 35.9˘1.6
LSTM 92.9˘1.4 90.9˘1.1 74.9˘1.5 12.1˘0.2 24.3˘0.3 58.9˘0.7 83.9˘0.9 79.7˘0.8 62.0˘2.5 11.2˘0.1 21.0˘0.8 51.5˘1.0

Transformer 98.0˘0.3 96.8˘0.6 78.2˘2.9 11.7˘0.3 22.4˘1.1 61.5˘0.9 88.4˘1.3 86.0˘1.3 62.5˘4.1 10.9˘0.2 19.0˘1.0 53.1˘1.6
NeSS «0 «0 «0 «0 «0 «0 - - - - - -

NSR (ours) 98.0˘0.2 97.3˘0.5 83.7˘1.2 95.9˘4.6 77.6˘3.1 90.1˘2.7 88.5˘1.0 86.2˘0.9 67.1˘2.4 83.2˘3.9 58.2˘3.3 76.0˘2.6
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Algorithm A1: Learning by Deduction-Abduction
Input :Training set D “ pxi, yiq : i “ 1, 2, ..., N

Output :θpT q
p , θ

pT q
s , θ

pT q

l

1 Initial Module: perception θ
p0q
p , syntax θ

p0q
s , semantics θp0q

l
2 for t Ð 0 to T do
3 Buffer B Ð ∅
4 foreach px, yq P D do
5 T Ð DEDUCEpx, θ

ptq
p , θ

ptq
s , θ

ptq

l q

6 T˚
Ð ABDUCEpT, yq

7 B Ð B Y T˚

8 θ
pt`1q
p , θ

pt`1q
s , θ

pt`1q

l Ð learnpB, θptq
p , θ

ptq
s , θ

ptq

l q

9 return θ
pT q
p , θ

pT q
s , θ

pT q

l
10

11 Function DEDUCE(x, θp, θs, θl):
12 Sample ŝ „ pps|x; θpq, ê „ ppe|ŝ; θsq, v̂ “ fpŝ, ê; θlq
13 return T “ă px, ŝ, v̂q, ê ą

14

15 Function ABDUCE(T , y):
16 Q Ð PriorityQueue()
17 Q.pushprootpT q, y, 1.0q

18 while Q is not empty do
19 A, yA, p Ð Q.poppq

20 A Ð px,w, v, arcsq

21 if A.v ““ yA then
22 return T pAq

// Abduce perception
23 foreach w1

P Σ do
24 A1

Ð Apw Ñ w1
q

25 if A1.v ““ yA then
26 Q.pushpA1, yA, ppA1

qq

// Abduce syntax
27 foreach arc P arcs do
28 A1

Ð rotatepA, arcq

29 if A1.v ““ yA then
30 Q.pushpA1, yA, ppA1

qq

// Abduce semantics
31 A1

Ð Apv Ñ yAq

32 Q.pushpA1, yA, ppA1
qq

// Top-down search
33 foreach B P childrenpAq do
34 yB Ð SolvepB,A, yA|θlpA.wqq

35 Q.pushpB, yB , ppBqq

36
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