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ABSTRACT

Current learning models often struggle with human-like systematic generalization,
particularly in learning compositional rules from limited data and extrapolating
them to novel combinations. We introduce the Neural-Symbolic Recursive Ma-
chine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the
emergence of combinatorial syntax and semantics directly from training data. The
NSR employs a modular design that integrates neural perception, syntactic parsing,
and semantic reasoning. These components are synergistically trained through a
novel deduction-abduction algorithm. Our findings demonstrate that NSR’s design,
imbued with the inductive biases of equivariance and compositionality, grants it the
expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve
unparalleled systematic generalization. We evaluate NSR’s efficacy across four
challenging benchmarks designed to probe systematic generalization capabilities:
SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic
reasoning, and a compositional machine translation task. The results affirm NSR’s
superiority over contemporary neural and hybrid models in terms of generalization
and transferability.

1 INTRODUCTION

A defining characteristic of human intelligence, systematic compositionality (Lake and Baroni, 2023),
represents the algebraic capability to generate infinite interpretations from finite, known components,
famously described as the “infinite use of finite means” (Chomsky, 1957; Montague, 1970; Marcus,
2018; Xie et al., 2021). This principle is essential for extrapolating from limited data to novel
combinations (Lake et al., 2017; Jiang et al., 2023). To evaluate machine learning models’ ability for
systematic generalization, datasets such as SCAN (Lake and Baroni, 2018), PCFG (Hupkes et al.,
2020), CFQ (Keysers et al., 2020), and HINT (Li et al., 2023b) have been introduced. Traditional
neural networks often falter on these challenges, leading to the exploration of inductive biases to foster
better generalization. Innovations like relative positional encoding and layer weight sharing have been
proposed to improve Transformers’ generalization capabilities (Csordás et al., 2021; Ontanón et al.,
2022). Moreover, neural-symbolic stack machines have been demonstrated to achieve remarkable
accuracy on tasks similar to SCAN (Chen et al., 2020), and large language models have been guided
towards compositional semantic parsing on CFQ (Drozdov et al., 2023). Yet, these solutions usually
require domain-specific knowledge and struggle with domain transfer.

In pursuit of achieving human-like systematic generalization across various domains, we introduce the
Neural-Symbolic Recursive Machine (NSR), a principled framework designed for the joint learning
of perception, syntax, and semantics. At the heart of NSR lies a Grounded Symbol System (GSS),
depicted in Fig. 1, which emerges solely from the training data, eliminating the need for domain-
specific knowledge. NSR employs a modular design, integrating neural perception, syntactic parsing,
and semantic reasoning. Initially, a neural network acts as the perception module, grounding symbols
in raw inputs. These symbols are then organized into a syntax tree by a transition-based neural
dependency parser (Chen and Manning, 2014), followed by the interpretation of their semantic
meaning using functional programs (Ellis et al., 2021). We prove that NSR’s capacity for various
sequence-to-sequence tasks, underpinned by the inductive biases of equivariance and compositionality,
allows for the decomposition of complex inputs, sequential processing of components, and their
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jump left after walk twice

jump 4 [JUMP]

left 5 [LTURN, JUMP]

walk 1 [WALK]

twice 9 [WALK, WALK]

after 12 [WALK, WALK , LTURN, JUMP]

append swap A B C , repeat B E

A 0 [A]

swap 51 [C, B, A]

B 1 [B]

repeat 52 [B, E, B, E]

append 53 [C, B, A, B, E, B, E]

B 1 [B] C 2 [C] E 4 [E]

2 2

10 29

3 3

12 27

9 9

(3) HINT(1) SCAN (2) PCFG

Figure 1: Illustrative examples of GSSs demonstrating human-like reasoning processes. (a) SCAN: each
node encapsulates a triplet (word, symbol, action sequence). (b) PCFG: nodes consist of triplets (word, symbol,
letter list). (c) HINT: nodes contain triplets (image, symbol, value). Symbols are denoted by their indices.

recomposition, thus facilitating the acquisition of meaningful symbols and compositional rules. These
biases are critical for NSR’s exceptional systematic generalization.

The end-to-end optimization of NSR poses significant challenges due to the lack of annotations for
the internal GSS and the model’s non-differentiable components. To circumvent these obstacles,
we devise a probabilistic learning framework and a novel deduction-abduction algorithm for the
joint training. This algorithm starts with a greedy deduction to form an initial GSS, which might be
inaccurate. A top-down search-based abduction follows, aiming to refine the initial GSS by exploring
its neighborhood for better solutions until the correct result is obtained. This refined GSS acts as
pseudo supervision, enabling the independent training of each NSR component.

NSR’s performance is validated against three benchmarks that test systematic generalization:

1. SCAN (Lake and Baroni, 2018), for translating natural language commands to action sequences;
2. PCFG (Hupkes et al., 2020), for predicting output sequences from string manipulation commands;
3. HINT (Li et al., 2023b), for computing results of handwritten arithmetic expressions.

NSR establishes new records on these benchmarks, achieving 100% generalization accuracy on SCAN
and PCFG, and surpassing the previous best accuracy on HINT by 23%. Our analyses show that
NSR’s modular design and intrinsic inductive biases lead to stronger generalization than traditional
neural networks and enhanced transferability over existing neural-symbolic models, with reduced
need for domain-specific knowledge. NSR’s effectiveness is further demonstrated on a compositional
machine translation task by Lake and Baroni (2018) with a 100% generalization accuracy, revealing
its potential in practical applications with complex and ambiguous rules.

2 RELATED WORK

The exploration of systematic generalization within deep neural networks has captivated the machine
learning community, especially following the introduction of the SCAN dataset (Lake and Baroni,
2018). Various benchmarks have since been introduced across multiple domains, including semantic
parsing (Keysers et al., 2020; Kim and Linzen, 2020), string manipulation (Hupkes et al., 2020), visual
question answering (Bahdanau et al., 2019; Xie et al., 2021), grounded language understanding (Ruis
et al., 2020), mathematical reasoning (Saxton et al., 2018; Li et al., 2023b), physical reasoning (Li
et al., 2024a; Dai et al., 2023; Li et al., 2022), word learning (Jiang et al., 2023), robot manipulation
(Li et al., 2024b; Wang et al., 2024; Li et al., 2023a), and recently developed open-ended worlds
(Fan et al., 2022; Xu et al., 2023), serving as platforms to evaluate different aspects of generalization,
like systematicity and productivity. In particular, research in semantic parsing (Chen et al., 2020;
Herzig and Berant, 2021; Drozdov et al., 2023) has explored incorporating diverse inductive biases
into neural networks to improve performance across these datasets. We categorize these approaches
into three groups based on their method of embedding inductive bias:

1. Architectural Prior: Techniques under this category aim to refine neural architectures to foster
compositional generalization. Dessı̀ and Baroni (2019) have shown convolutional networks’ effec-
tiveness over RNNs in SCAN’s “jump” split. Russin et al. (2019) improve RNNs by developing
separate modules for syntax and semantics, while Gordon et al. (2019) introduce a permutation
equivariant seq2seq model with convolutional operations for local equivariance. Enhancements in
Transformers’ systematic generalization through relative positional encoding and layer weight
sharing are reported by Csordás et al. (2021) and Ontanón et al. (2022). Furthermore, Gontier et al.
(2022) embed entity type abstractions in pretrained Transformers to boost logical reasoning.
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2. Data Augmentation: This strategy devises schemes to create auxiliary training data to foster
compositional generalization. Andreas (2020) augment data by interchanging fragments of training
samples, and Akyürek et al. (2020) employ a generative model to recombine and resample training
data. The meta sequence-to-sequence model (Lake, 2019) and the rule synthesizer (Nye et al.,
2020) utilize samples from a meta-grammar resembling the SCAN grammar.

3. Symbolic Scaffolding: This strategy entails the integration of symbolic components into neural
frameworks to enhance generalization. Liu et al. (2020) link a memory-augmented model with
analytical expressions, emulating reasoning processes. Chen et al. (2020) embed a symbolic
stack machine within a seq2seq model, with a neural controller managing operations. Kim (2021)
derive latent neural grammars for both the encoder and decoder in a seq2seq model. While these
methods achieve significant generalization by embedding symbolic scaffolding, their reliance on
domain-specific knowledge and complex training methods, such as hierarchical reinforcement
learning in Liu et al. (2020) and exhaustive search in Chen et al. (2020), restrict their practical use.

Beyond these technical implementations, existing research underscores two core inductive biases
critical for compositional generalization: equivariance and compositionality. The introduced NSR
model incorporates a generalized Grounded Symbol System as symbolic scaffolding and instills these
biases within its modules, facilitating robust compositional generalization. Distinct from prior neural-
symbolic methods, NSR requires minimal domain-specific knowledge and forgoes a specialized
learning curriculum, leading to enhanced transferability and streamlined optimization across different
domains, as demonstrated by our experiments; we refer readers to Sec. 4 for details.

Our work also intersects with neural-symbolic approaches for logical reasoning, such as the in-
troduction of Neural Theorem Provers (NTPs) by Rocktäschel and Riedel (2017) for end-to-end
differentiable proving with dense vector representations of symbols. Minervini et al. (2020) ad-
dress NTPs’ computational challenges with Greedy NTPs, extending their application to real-world
datasets. Furthermore, Mao et al. (2018) present a Neuro-Symbolic Concept Learner that utilizes a
domain-specific language to learn visual concepts from question-answering pairs.

3 NEURAL-SYMBOLIC RECURSIVE MACHINE

3.1 REPRESENTATION: GROUNDED SYMBOL SYSTEM (GSS)

The debate between connectionism and symbolism on the optimal representation for systematic
generalization has been longstanding (Fodor et al., 1988; Fodor and Lepore, 2002; Marcus, 2018).
Connectionism argues for distributed representations, where concepts are encoded across many
neurons (Hinton, 1984), while symbolism advocates for physical symbol systems, with each symbol
encapsulating an atomic concept, and complex ideas constructed through syntactical combination
(Newell, 1980; Chomsky, 1965; Hauser et al., 2002; Evans and Levinson, 2009). Symbol systems,
due to their interpretability, enable higher abstraction and generalization capabilities than distributed
representations (Launchbury, 2017). However, developing symbol systems is knowledge-intensive
and may lead to brittle systems, susceptible to the symbol grounding problem (Harnad, 1990).

We introduce a Grounded Symbol System (GSS) as the internal representation for systematic gener-
alization, aiming to seamlessly integrate perception, syntax, and semantics, as depicted by Fig. 1.
Formally, a GSS is a directed tree T “ă px, s, vq, e ą, with each node being a triplet consisting of
grounded input x, an abstract symbol s, and its semantic meaning v. The edges e represent semantic
dependencies, with an edge i Ñ j indicating node i’s meaning depends on node j.

Given the delicate nature and intensive effort required to create handcrafted symbol systems, the
necessity of anchoring them in raw inputs and deriving their syntax and semantics directly from
training data is paramount. This critical aspect is explored in depth in the subsequent sections.

3.2 MODEL: NEURAL-SYMBOLIC RECURSIVE MACHINE (NSR)

The NSR model, structured to induce a GSS from the training data, integrates three trainable modules
(Fig. 2): neural perception for symbol grounding, dependency parsing to infer dependencies between
symbols, and program synthesis to deduce semantic meanings. Given the absence of ground-truth
GSS during training, these modules must be trained end-to-end without intermediate supervision.
Below, we detail these modules and the end-to-end learning approach.
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Figure 2: Illustration of the inference and learning pipeline in NSR.

Neural Perception This module converts raw input x (e.g., a handwritten expression) into a
symbolic sequence s, represented by a list of indices. It addresses the perceptual variability of raw
input signals, ensuring that each predicted token wi P s accurately matches a specific segment of the
input xi P x. Formally, this relationship is expressed as:

pps|x; θpq “
ź

i

ppwi|xi; θpq “
ź

i

softmaxpϕpwi, xi; θpqq, (1)

where ϕpwi, xi; θpq denotes a scoring function parameterized by a neural network with parameters
θp. The design of this neural network varies with the type of raw input and can be pre-trained, such
as using a pre-trained convolutional neural network for processing image inputs.

Dependency Parsing To deduce the dependencies among symbols, we employ a transition-based
neural dependency parser (Chen and Manning, 2014), a widely used method in natural language
sentence parsing. Operating as a state machine, the parser identifies possible transitions to transform
the input sequence into a dependency tree, iteratively applying predicted transitions until the parsing
process is complete; see Fig. A1 for illustration. At each step, the parser predicts a transition based
on the state representation, which includes the top elements of the stack and buffer, along with
their direct descendants. A two-layer feed-forward neural network, given this state representation,
determines the next transition. Formally, for an input sequence s, the parsing process is defined as:

ppe|s; θsq “ ppT |s; θsq “
ź

tiPT
ppti|ci; θsq, (2)

where θs are the parameters of the parser, T “ tt1, t2, ..., tlu ( e is the sequence of transitions
that generates the dependency tree e, and ci is the state representation at step i. A greedy decoding
strategy is employed to determine the most likely transition sequence for the given input sequence.

Program Induction Influenced by developments in program induction (Ellis et al., 2021; Balog
et al., 2017; Devlin et al., 2017), we utilize functional programs to express the semantics of symbols,
framing learning as a process of program induction. Symbolic programs offer enhanced generalizabil-
ity, interpretability, and sample efficiency over purely statistical approaches. Formally, given input
symbols s and their dependencies e, the relationship is defined as:

ppv|e, s; θlq “
ź

i

ppvi|si, childrenpsiq; θlq, (3)

where θl denotes the set of induced programs for each symbol. Symbolic programs are utilized in
practice, ensuring a deterministic reasoning process.

Deriving symbol semantics involves identifying a program that aligns with given examples, employing
pre-defined primitives. Based on Peano axioms (Peano, 1889; Xie et al., 2021), we select a universal
set of primitives, such as 0, inc, dec, ==, and if, proven to be sufficient for any symbolic
function representation; see Sec. 3.4 for an in-depth discussion. To streamline the search and improve
generalization, we include a minimal subset of Lisp primitives and the recursion primitive (Y-
combinator (Peyton Jones, 1987)). DreamCoder (Ellis et al., 2021) is adapted for program induction;
we modified it to accommodate noise in examples during the search.

Model Inference Fig. 2 depicts the model inference process, beginning with the neural perception
module translating input x, such as a handwritten expression from Fig. 1 (3) HINT, into a sequence of
symbols, 2 ` 3 ˆ 9. The dependency parsing module then structures this sequence into a dependency
tree, for instance, ` Ñ 2ˆ and ˆ Ñ 3 9. Subsequently, the program induction module employs
programs associated with each symbol to compute node values in a bottom-up fashion, yielding
calculations like 3 ˆ 9 ñ 27, followed by 2 ` 27 ñ 29.
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3.3 LEARNING

The intermediate GSS in NSR is both latent and non-differentiable, making direct application
of backpropagation unfeasible. Traditional approaches, such as policy gradient algorithms like
REINFORCE (Williams, 1992), face difficulties with slow or inconsistent convergence (Liang et al.,
2018; Li et al., 2020). Given the vast search space for GSS, a more efficient learning algorithm is
imperative. Formally, for input x, intermediate GSS T “ă px, s, vq, e ą, and output y, the likelihood
of observing px, yq, marginalized over T , is expressed as:

ppy|x; Θq “
ÿ

T

ppT, y|x; Θq “
ÿ

s,e,v

pps|x; θpqppe|s; θsqppv|s, e; θlqppy|vq, (4)

where maximizing the observed-data log-likelihood Lpx, yq “ log ppy|xq becomes the learning
objective, from a maximum likelihood estimation viewpoint. The gradients of L with respect to
θp, θs, θl are as follows:

∇θpLpx, yq “ ET„ppT |x,yqr∇θp log pps|x; θpqs,

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,

(5)

where ppT |x, yq denotes the posterior distribution of T given px, yq, which can be represented as:

ppT |x, yq “
ppT, y|x; Θq

ř

T 1 ppT 1, y|x; Θq
“

#

0, if T R Q
ppT |x;Θq

ř

T 1PQ ppT 1|x;Θq
, if T P Q (6)

with Q as the set of T congruent with y.
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Figure 3: Illustration of abduction in HINT over per-
ception, syntax, and semantics. Elements modified
during abduction are emphasized in red.

Due to the computational challenge of taking
expectations with respect to this posterior dis-
tribution, Monte Carlo sampling is utilized for
approximation. This optimization strategy en-
tails sampling a solution from the posterior dis-
tribution and iteratively updating each module
through supervised training, circumventing the
difficulty of sampling within a vast, sparsely
populated space.

Deduction-Abduction The essence of our
learning approach is an efficient sampling from
the posterior distribution ppT |x, yq, achieved
through the deduction-abduction algorithm
(Alg. A1). For an instance px, yq, we initially
perform a greedy deduction from x to obtain an
initial GSS T “ă px, ŝ, v̂q, ê ą. To align T˚

with the correct result y during training, a top-
down abduction search is employed, iterating
over the neighbors of T and adjusting across
perception, syntax, and semantics; see Figs. 3
and A2 for more details. This search ceases upon
finding a T˚ that yields y or reaching a prede-
termined number of steps. Theoretically, this
method acts as a Metropolis-Hastings sampler
for ppT |x, yq, facilitating an efficient approach
to model training (Li et al., 2020).

3.4 EXPRESSIVENESS AND GENERALIZATION OF NSR

We now examine the characteristics of NSR, particularly its expressiveness and ability to systemati-
cally generalize, which are attributed to its inherent inductive biases.
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Expressiveness The capacity of NSR to represent a broad spectrum of seq2seq tasks is substantiated
by theoretical analysis. The following theorem articulates the model’s expressiveness.
Theorem 3.1. Given any finite dataset D “ tpxi, yiquNi“0, there exists an NSR that can express D
using only four primitives: t0,inc,==,ifu.

The proof of this theorem involves constructing a specialized NSR that effectively “memorizes” all
examples in D through a comprehensive program:

NSRpxq “ ifpfppxq==0, y0,ifpfppxq==1, y1, ...ifpfppxq==N, yN ,∅q...q, (7)

serving as a sophisticated lookup table constructed with tif,==u and the indexing scheme provided
by t0,incu(proved by Lemmas C.1 and C.2). Given the universality of these four primitives across
domains, NSR’s ability to model a variety of seq2seq tasks is assured, offering improved transferability
compared to preceding neural-symbolic models.

Generalization The program outlined in Eq. (7), while guaranteeing perfect accuracy on the training
dataset, lacks in generalization capacity. For effective generalization, it is essential to incorporate
certain inductive biases that are minimal yet universally applicable across various domains. Inspired
by seminal works in compositional generalization (Gordon et al., 2019; Chen et al., 2020; Xie
et al., 2021; Zhang et al., 2022), we advocate for two critical inductive biases: equivariance and
compositionality. Equivariance enhances the model’s systematicity, enabling it to generalize concepts
such as ‘‘jump twice’’ from examples like {‘‘run’’, ‘‘run twice’’, ‘‘jump’’},
whereas compositionality increases the model’s ability to extend these concepts to longer sequences,
e.g., ‘‘run and jump twice’’.

The formal definitions of equivariance and compositionality are as follows:
Definition 3.1 (Equivariance). For sets X and Y , and a permutation group P with operations
Tp : X Ñ X and T 1

p : Y Ñ Y , a mapping Φ : X Ñ Y is equivariant iff @x P X , p P P : ΦpTpxq “

T 1
pΦpxq.

Definition 3.2 (Compositionality). For sets X and Y , with composition operations Tc : pX ,X q Ñ X
and T 1

c : pY,Yq Ñ Y , a mapping Φ : X Ñ Y is compositional iff DTc, T
1
c,@x1 P X , x2 P X :

ΦpTcpx1, x2qq “ T 1
cpΦpx1q,Φpx2qq.

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program
induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transforma-
tions based on their formulations. Models demonstrating exceptional compositional generalization,
such as NeSS (Chen et al., 2020), LANE (Liu et al., 2020), and NSR, inherently possess these
properties. This leads to our hypothesis regarding compositional generalization:
Hypothesis 3.1. A model achieving compositional generalization instantiates a mapping Φ : X Ñ Y
that is inherently equivariant and compositional.

4 EXPERIMENTS

Our evaluation of the NSR’s capabilities in systematic generalization extends across three distinct
benchmarks: (i) SCAN (Lake and Baroni, 2018), focusing on the translation of natural language
commands to action sequences; (ii) PCFG (Hupkes et al., 2020), aimed at predicting output sequences
from string manipulation commands; and (iii) HINT (Li et al., 2023b), predicting outcomes of
handwritten arithmetic expressions. Furthermore, we explore NSR’s performance on a compositional
machine translation task (Lake and Baroni, 2018) to validate its applicability to real-world scenarios.

4.1 SCAN

The SCAN dataset (Lake and Baroni, 2018) emerges as a critical benchmark for assessing machine
learning models’ systematic generalization capabilities. It challenges models to translate natural
language directives into sequences of actions, simulating the movement of an agent within a grid-like
environment.

Evaluation Protocols Following established studies (Lake, 2019; Gordon et al., 2019; Chen et al.,
2020), we assess NSR using four splits: (i) SIMPLE, where the dataset is randomly divided into
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training and test sets; (ii) LENGTH, with training on output sequences up to 22 actions and testing on
sequences from 24 to 48 actions; (iii) JUMP, training excluding the “jump” command mixed with
other primitives, tested on combinations including “jump”; and (iv) AROUND RIGHT, excluding
“around right” from training but testing on combinations derived from the separately trained “around”
and “right.”

Baselines NSR is compared against multiple models including (i) seq2seq (Lake and Baroni, 2018),
(ii) CNN (Dessı̀ and Baroni, 2019), (iii) Transformer (Csordás et al., 2021; Ontanón et al., 2022),
(iv) equivariant seq2seq (Gordon et al., 2019)—a model that amalgamates convolutional operations
with RNNs to attain local equivariance, and (v) NeSS (Chen et al., 2020)—a model that integrates a
symbolic stack machine into a seq2seq framework.

Results The summarized results are presented in Tab. 1. Remarkably, both NSR and NeSS realize
100% accuracy on the splits necessitating systematic generalization. In contrast, the peak performance
of other models on the LENGTH split barely reaches 20%. This stark discrepancy underscores the
pivotal role and efficacy of symbolic components—specifically, the symbolic stack machine in NeSS
and the GSS in NSR—in fostering systematic generalization.

Table 1: Test accuracy across various splits of SCAN and PCFG. The results of NeSS on PCFG are reported
by modifying the source code from Chen et al. (2020) for PCFG.

models SCAN PCFG

SIMPLE JUMP AROUND RIGHT LENGTH i.i.d. systematicity productivity

Seq2Seq (Lake and Baroni, 2018) 99.7 1.2 2.5 13.8 79 53 30
CNN (Dessı̀ and Baroni, 2019) 100.0 69.2 56.7 0.0 85 56 31

Transformer (Csordás et al., 2021) - - - 20.0 - 96 85
Transformer (Ontanón et al., 2022) - 0.0 - 19.6 - 83 63

equivariant Seq2seq (Gordon et al., 2019) 100.0 99.1 92.0 15.9 - - -
NeSS (Chen et al., 2020) 100.0 100.0 100.0 100.0 «0 «0 «0

NSR (ours) 100.0 100.0 100.0 100.0 100 100 100

While NeSS and NSR both manifest impeccable generalization on SCAN, their foundational princi-
ples are distinctly divergent.

1. NeSS necessitates an extensive reservoir of domain-specific knowledge to meticulously craft
the components of the stack machine, encompassing stack operations and category predictors.
Without the incorporation of category predictors, the efficacy of NeSS plummets to approximately
20% in 3 out of 5 runs. Contrarily, NSR adopts a modular architecture, minimizing reliance on
domain-specific knowledge.

2. The training regimen for NeSS is contingent on a manually curated curriculum, coupled with
specialized training protocols for latent category predictors. Conversely, NSR is devoid of any
prerequisite for a specialized training paradigm.

Fig. 4 elucidates the syntax and semantics assimilated by NSR from the LENGTH split in SCAN.
The dependency parser of NSR, exhibiting equivariance as elucidated in Sec. 3.4, delineates
distinct permutation equivalent groups syntactically among the input words: {turn, walk,
look, run, jump}, {left, right, opposite, around, twice, thrice}, and
{and, after}. It is pivotal to note that no prior information regarding these groups is im-
parted—they are entirely a manifestation of the learning from the training data. This is in stark
contrast to the provision of pre-defined equivariant groups (Gordon et al., 2019) or the explicit
integration of a category induction procedure from execution traces (Chen et al., 2020). Within the
realm of the learned programs, the program synthesizer of NSR formulates an index space for the
target language and discerns the accurate programs to encapsulate the semantics of each source word.

4.2 PCFG

We further assess NSR on the PCFG dataset (Hupkes et al., 2020), a task where the model is trained to
predict the output of a string manipulation command. The input sequences in PCFG are synthesized
using a probabilistic context-free grammar, and the corresponding output sequences are formed by
recursively executing the string edit operations delineated in the input sequences. The selection of
input samples is designed to mirror the statistical attributes of a natural language corpus, including
sentence lengths and parse tree depths.
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(a) Syntactic similarity amongst input words in NSR.

turn : ∅ → [	]
walk : ∅ → [inc	0]
look : ∅ → [inc	inc	0]
run : ∅ → [inc	inc	inc	0]
jump : ∅ → [inc	inc	inc	inc	0]
left : 𝑥 → cons	(inc	inc	inc	inc	inc		0, 𝑥)
right : 𝑥 → cons	(inc	inc	inc	inc	inc	inc		0, 𝑥)
opposite : 𝑥 → cons car 𝑥 , 𝑥
around : 𝑥 → + + + 𝑥, 𝑥 , 𝑥 , 𝑥
twice : 𝑥 → + 𝑥, 𝑥
thrice : 𝑥 → + + 𝑥, 𝑥 , 𝑥
and : 𝑥, 𝑦 → + 𝑥, 𝑦
after : 𝑥, 𝑦 → + 𝑦, 𝑥

1 →WALK
2 → LOOK
3 → RUN
4 → JUMP
5 → LTRUN
6 → RTURN

(b) Programs induced using NSR.
Figure 4: (a) Syntactic similarity amongst input words in NSR trained on the LENGTH split in SCAN. The
similarity between word i and word j is quantified by the percentage of test samples where substituting i with j,
or vice versa, retains the dependencies as predicted by the dependency parser. (b) Induced programs for input
words using NSR. Here, x and y represent the inputs, ∅ signifies empty inputs, cons appends an item to the
beginning of a list, car retrieves the first item of a list, and + amalgamates two lists.

Evaluation Protocols and Baselines The evaluation is conducted across the following splits: (i)
i.i.d: where samples are randomly allocated for training and testing, (ii) systematicity: this split is
designed to specifically assess the model’s capability to interpret combinations of functions unseen
during training, and (iii) productivity: this split tests the model’s generalization to longer sequences,
with training samples containing up to 8 functions and test samples having at least 9 functions. NSR
is compared against (i) seq2seq (Lake and Baroni, 2018), (ii) CNN (Dessı̀ and Baroni, 2019), (iii)
Transformer (Csordás et al., 2021; Ontanón et al., 2022), and (iv) NeSS (Chen et al., 2020).

Results The results are consolidated in Tab. 1. NSR demonstrates exemplary performance, achieving
100% accuracy across all PCFG splits and surpassing the prior best-performing model (Transformer)
by 4% on the “systematicity” split and by 15% on the “productivity” split. Notably, while NeSS
exhibits flawless accuracy on SCAN, it encounters total failure on PCFG. A closer examination of
NeSS’s training on PCFG reveals that its stack operations cannot represent PCFG’s binary functions,
and the trace search process is hindered by PCFG’s extensive vocabulary and elongated sequences.
Adapting NeSS to this context would necessitate substantial domain-specific modifications and
extensive refinements to both the stack machine and the training methodology.

4.3 HINT

We also evaluate NSR on HINT (Li et al., 2023b), a task where the model predicts the integer result
of a handwritten arithmetic expression, such as Ñ 40, without any intermediate
supervision. HINT is challenging due to the high variance and ambiguity in real handwritten images,
the complexity of syntax due to parentheses, and the involvement of recursive functions in seman-
tics. The dataset includes one training set and five test subsets, each assessing different aspects of
generalization across perception, syntax, and semantics.

Evaluation Protocols and Baselines Adhering to the protocols of Li et al. (2023b), we train models
on a single training set and evaluate them on five test subsets: (i) “I”: expressions seen in training but
composed of unseen handwritten images. (ii) “SS”: unseen expressions, but their lengths and values
are within the training range. (iii) “LS”: expressions are longer than those in training, but their values
are within the same range. (iv) “SL”: expressions have larger values, and their lengths are the same
as training. (v) “LL”: expressions are longer, and their values are bigger than those in training. A
prediction is deemed correct only if it exactly matches the ground truth. We compare NSR against
several baselines including seq2seq models like GRU, LSTM, and Transformer as reported by Li et al.
(2023b), and NeSS (Chen et al., 2020), with each model utilizing a ResNet-18 as the image encoder.

Results The results are summarized in Tab. 2. NSR surpasses the state-of-the-art model, Trans-
former, by approximately 23%. The detailed results reveal that this improvement is primarily due to
better extrapolation in syntax and semantics, with NSR elevating the accuracy on the “LL” subset
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Table 2: Test accuracy on HINT. Results for GRU, LSTM, and Transformer are directly cited from Li et al.
(2023b). NeSS results are obtained by adapting its source code to HINT.

Model Symbol Input Image Input

I SS LS SL LL Avg. I SS LS SL LL Avg.

GRU 76.2 69.5 42.8 10.5 15.1 42.5 66.7 58.7 33.1 9.4 12.8 35.9
LSTM 92.9 90.9 74.9 12.1 24.3 58.9 83.9 79.7 62.0 11.2 21.0 51.5

Transformer 98.0 96.8 78.2 11.7 22.4 61.5 88.4 86.0 62.5 10.9 19.0 53.1
NeSS «0 «0 «0 «0 «0 «0 - - - - - -

NSR (ours) 98.0 97.3 83.7 95.9 77.6 90.1 88.5 86.2 67.1 83.2 58.2 76.0

from 19.0% to 58.2%. The gains on the “I” and “SS” subsets are more modest, around 2%. For a
more detailed insight into NSR’s predictions on HINT, refer to Fig. A3. Similar to its performance on
PCFG, NeSS fails on HINT, underscoring the challenges discussed in Sec. 4.2.

4.4 COMPOSITIONAL MACHINE TRANSLATION

In order to assess the applicability of NSR to real-world scenarios, we conduct a proof-of-concept
experiment on a compositional machine translation task, specifically the English-French translation
task, as described by Lake and Baroni (2018). This task has been a benchmark for several studies (Li
et al., 2019; Chen et al., 2020; Kim, 2021) to validate the efficacy of their proposed methods in more
realistic and complex domains compared to synthetic tasks like SCAN and PCFG. The complexity
and ambiguity of the rules in this translation task are notably higher.

We utilize the publicly available data splits provided by Li et al. (2019). The training set comprises
10,000 English-French sentence pairs, with English sentences primarily initiating with phrases like “I
am,” “you are,” and their respective contractions. Uniquely, the training set includes 1,000 repetitions
of the sentence pair (“I am daxy,” “je suis daxiste”), introducing the pseudoword “daxy.” The test set,
however, explores 8 different combinations of “daxy” with other phrases, such as “you are not daxy,”
which are absent from the training set.

Table 3: Accuracy on composi-
tional machine translation.

Model Accuracy

Seq2Seq 12.5
Transformer 14.4

NeSS 100.0
NSR (ours) 100.0

Results Tab. 3 presents the results of the compositional machine
translation task. We compare NSR with Seq2Seq (Lake and Baroni,
2018) and NeSS (Chen et al., 2020). It is noteworthy that two distinct
French translations for “you are” are prevalent in the training set;
hence, both are deemed correct in the test set. NSR, akin to NeSS,
attains 100% generalization accuracy on this task, demonstrating its
potential applicability to real-world tasks characterized by diverse and
ambiguous rules.

5 CONCLUSION AND DISCUSSION

We introduced NSR, a model capable of learning Grounded Symbol System from data to facilitate
systematic generalization. The Grounded Symbol System offers a generalizable and interpretable rep-
resentation, allowing a principled amalgamation of perception, syntax, and semantics. NSR employs
a modular design, incorporating the essential inductive biases of equivariance and compositional-
ity in each module to realize compositional generalization. We developed a probabilistic learning
framework and introduced a novel deduction-abduction algorithm to enable the efficient training of
NSR without GSS supervision. NSR has demonstrated superior performance across diverse domains,
including semantic parsing, string manipulation, arithmetic reasoning, and compositional machine
translation.

Limitations While NSR has shown impeccable accuracy on a conceptual machine translation task,
we foresee challenges in its deployment for real-world tasks due to (i) the presence of noisy and
abundant concepts, which may enlarge the space of the grounded symbol system and potentially
decelerate the training of NSR, and (ii) the deterministic nature of the functional programs in NSR,
limiting its ability to represent probabilistic semantics inherent in real-world tasks, such as the
existence of multiple translations for a single sentence. Addressing these challenges remains a subject
for future research.
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