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Fig. 1: Overview. Left: Given two sets of features, EM , EN , and FM , FN , we compute
the Laplacian eigenfunction basis with EM , EN , and apply regularizations to the
functional map optimization using FM , FN . This method optimizes a mapping in the
spectral domain derived from one feature set to achieve a consensus with the other
set. Right: With a better understanding of the global image structure, our method
produces smoother and more accurate correspondences in a zero-shot manner.

Abstract. Correspondences emerge from large-scale vision models trained
for generative and discriminative tasks. This has been revealed and bench-
marked by computing correspondence maps between pairs of images,
using nearest neighbors on the feature grids. Existing work has attempted
to improve the quality of these correspondence maps by carefully mixing
features from different sources, such as by combining the features of
different layers or networks. We point out that a better correspondence
strategy is available, which directly imposes structure on the correspon-
dence field: the functional map. Wielding this simple mathematical tool,
we lift the correspondence problem from the pixel space to the function
space and directly optimize for mappings that are globally coherent. We
demonstrate that our technique yields correspondences that are not only
smoother but also more accurate, with the possibility of better reflect-
ing the knowledge embedded in the large-scale vision models that we
are studying. Our approach sets a new state-of-the-art on various dense
correspondence tasks. We also demonstrate our effectiveness in keypoint
correspondence and affordance map transfer.

Keywords: Functional map · Zero shot image matching · Dense corre-
spondence · Emergent feature property
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1 Introduction

Identifying image correspondence is a crucial task in mid-level computer vision.
Recent advancements in large-scale vision models, trained for either genera-
tive [37] or discriminative [6, 30] tasks, possess emerged capabilities for dense
correspondences [1,13,44,56]. This learning is primarily facilitated by computing
nearest neighbor matches between image patches with their feature similarities.
Notably, the correspondences induced by these models can achieve comparable
or even better performances compared to the methods explicitly designed for
this purpose. However, a notable limitation arises: these models often struggle to
retain the global structure of the correspondences. This can be attributed to the
distortions and discontinuities in the nearest-neighbor search process.

While contemporary methods [56] have attempted to mitigate this prob-
lem by integrating features from different layers and networks, this approach
only indirectly confronts the fundamental issue—the lack of structure in the
correspondence maps. Fundamentally, point-wise correspondences are inherently
susceptible to noise. Therefore, imposing a global structure on the correspondence
maps is crucial for attaining high-quality correspondences without supervision

In this work, we leverage functional maps [31] to tackle the above challenge.
Originating from computer graphics, functional maps present a robust alternative
to point-to-point correspondences [4,18,27]. They represent dense correspondences
as linear mappings between function spaces, usually defined on 3D shapes. The
key aspect of functional maps is their ability to capture deformations that
align one manifold with another. Owing to their low-dimensional yet expressive
nature, functional maps effectively incorporate global structures into the matching
process. This approach provides a compelling solution to the challenges inherent
in traditional point-wise correspondence methods.

Specifically, we improve zero-shot feature-based correspondence methods by
transitioning from the pixel space to the function space, thereby enhancing the
method’s coherence and effectiveness. Traditional functional maps on manifolds
rely on two geometric inputs: the Laplacian operator, which is crucial for comput-
ing the eigenfunction basis, and a local geometric descriptor, for the application
of regularization losses. We adapt these components to the realm of images by
employing visual features extracted from two distinct large vision models. Our ap-
proach diverges from traditional methods, which typically identify corresponding
pixels between images through nearest neighbor search. Instead, we concentrate
on optimizing a linear function map established on the eigenfunction basis defined
by the first feature map, with the second feature map serving as a geometric
regularizer. This process, notably unsupervised, marks a significant difference
from conventional methods. Further augmenting our method’s robustness, espe-
cially against occlusions, is the incorporation of a transformer module for tackling
partial shape matching, as detailed in partial functional maps et al . [2]. Such
integration of functional map concepts with feature-based methods in image
analysis represents a cohesive and logical advancement in tackling the challenges
of correspondence tasks.
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We evaluate our framework on dense correspondence across various base
networks, demonstrating consistent enhancements in matching accuracy and other
functional properties like smoothness compared to the traditional nearest neighbor
search. We highlight the qualitative results of our approach on the challenging
cases with significant shape variations, viewpoint changes, and occlusions. We
further demonstrate our effectiveness on keypoint correspondences and object
affordance map transfer, showcasing its versatility in diverse scenarios.

In summary, our primary contribution is a novel zero-shot framework designed
to derive correspondence maps from pre-trained features. Central to our approach
is the concept of optimizing a functional map that establishes a relationship
between the entire image contents, moving away from the conventional method of
direct pixel-to-pixel correspondence searches. Our experimental results, evaluated
on various standard datasets, demonstrate that our method produces correspon-
dences that are not only smoother and more accurate but also exhibit greater
global coherence compared to previous efforts. We believe that our techniques
effectively uncover the underlying correspondence capabilities of the large-scale
backbone networks. We hope that our work will serve as an inspiration for future
research in general-purpose object correspondence.

2 Related Work

Emergent correspondence from vision models. Deep image networks have
demonstrated remarkable robustness to geometric transformations, such as ro-
tation, scaling, and perspective changes, leading to the emergence of dense
correspondences [9, 29, 33, 40, 51, 55]. These transformations, predominantly rigid
in nature, have been a focal point in previous studies. The research by Amir et
al . [1] revealed that features extracted from DINOv1 [6] not only act as effective
dense visual descriptors but also naturally induce semantic correspondences
without direct supervision. This capability is further amplified in its successor,
DINOv2 [30]. Beyond discriminative models, recent explorations have shown
that generative models, such as diffusion models, also unveil emergent dense
correspondences within their latent features [13, 44, 56]. Intriguingly, Zhang et
al . [56] discovered that combining features from DINOv2 [30] with those from
Stable Diffusion [37] significantly enhances correspondence quality.

Our study highlights a crucial gap: existing methods lack structural awareness
when computing correspondences by nearest-neighbor queries of per-pixel features.
Here, we propose representing the correspondence map within a functional space,
offering a novel approach to this challenge.

Semantic correspondence. Semantic correspondence [23] seeks to establish
pixel-wise matches across objects differing in poses, appearances, deformations,
or even categories. Traditional approaches generally involve three stages [50]:
feature extraction, cost volume construction, and displacement field [46–49] or
parameterized transformation regression [16,17,34,35,41]. However, their reliance
on smooth displacement fields or locally affine transformations hinders their
ability to model complex object deformations or shape variations effectively.
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Recent developments, inspired by the classical congealing method [19], focus
on aligning multiple objects within the same class using learning techniques like
DINOv1 features [10, 28] or GAN-synthesized data [32]. Despite their strong
assumptions about data rigidity, these studies suggest that leveraging features
and information from diverse tasks can enhance the quality of dense image
correspondences. In our work, we further demonstrate that a structure-aware
fusion of features learned from multiple tasks can significantly improve the quality
of correspondence maps.

Functional maps. Initially introduced by Ovsjanikov et al . [31] and further
expanded by Aubry et al . [3], functional maps offer a method to represent shape
correspondences as linear transformations between spectral embeddings. This is
achieved using compact matrices based on eigenfunction basis. Enhancements in
accuracy, efficiency, and robustness have been realized in subsequent studies [4,
14, 18, 27]. Moving away from traditional methods dependent on hand-crafted
features [3, 43], recent developments have introduced various learning-based
functional map frameworks. These utilize shape features learned via pairwise
label supervision [22], geometric priors [11,38], or robust mesh features [5,8,20,42].
While traditionally employed for full-shape correspondence, functional maps have
also been adapted to handle partial correspondences [2, 36], thus aligning more
closely with real-world scenarios.

While functional maps are extensively explored for 3D shape representations
like meshes and point clouds, their application to 2D images has been limited
due to the ambiguous manifold structure of RGB-value representations [52,53].
Previous attempts at applying these maps to super-pixel image representations
and utilizing their eigenfunctions as a basis [52, 53] typically result in significant
information loss. This is often due to the coarse nature of pre-segmentation in
images and the resultant inconsistency in super-pixel representation. In our work,
we address these challenges by using the entire image as input for a large vision
model, ensuring a consistent initial representation and stable global structure
during transformations by functional maps.

3 Method

3.1 Preliminaries

Functional map. Originally introduced in Ovsjanikov et al . [31], the functional
map is a method for representing dense correspondences in the function space.
This approach is based on the concept of mapping between function spaces
defined on manifolds. Specifically, given two manifolds M and N , we consider the
spaces F(M,R) and F(N ,R), each comprising all real-valued scalar functions
on these manifolds, denoted as φM : M → R and φN : N → R, respectively. We
can express a bijective mapping T : M → N as a linear mapping between these
function spaces, as follows:

TF : F(M,R) → F(N ,R), f 7→ TF (f). (1)
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Fig. 2: Eigenfunctions of the image Laplacian. We visualize the eigenfunctions of
the graph Laplacian operator corresponding to the first 5 smallest eigenvalues λ1, · · · , λ5

(low frequency) as well as λ10, λ20, λ50 (high frequency).

To compute these mappings effectively, we expand the function spaces
F(M,R) and F(N ,R) by introducing sets of basis functions, ΦM = {φM

i }
and ΦN = {φN

i }, for M and N , respectively. Thus, any real-valued function
f ∈ F(M,R) can be represented as a linear combination of these basis functions:
f =

∑
i aiφ

M
i . Applying the operator TF to f leads to the equation:

TF (f) = TF

(∑
i

aiφ
M
i

)
=
∑
i

aiTF (φ
M
i ). (2)

Each transformed function TF (φ
M
i ) ∈ F(N ,R) can be further decomposed into

a linear combination of φN
j . Hence, we have TF (φ

M
i ) =

∑
j cijφ

N
j , leading to:

TF (f) =
∑
i

ai

∑
j

cijφ
N
j =

∑
h

∑
i

aicijφ
N
j . (3)

For simplicity, the function f is represented in a vector form with coefficients
a = (a1, a2, · · · )t. Consequently, the transformation TF on a is given by TF (a) =
Ca, where C is a matrix with elements cij , representing the j-th coefficient of
TF (φ

M
i ) in the basis {φN

j }.
To translate the functional map into point-to-point correspondences, we treat

each point as a Dirac delta function in the function space. Specifically, this
conversion from the functional to the point-wise map is executed via a nearest
neighbor search between the rows of CΦM and ΦN . A more detailed explanation
of this process is available in the supplementary material.

Deep partial functional map. The functional map framework, while adept at
modeling perfect correspondence mappings between complete shapes [31], faces
challenges when applied to real-world data that often have missing data and
noise. This has led to the development of partial functional maps, as discussed
in [2, 36].
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The primary challenge in adapting functional maps to partial shapes is
the disruption of core assumptions, such as manifold completeness and bijective
mappings. Atta et al . [2] address this challenge by introducing a feature refinement
network, denoted as gR, which enhances the robustness of partial functional
maps against shape partiality.

Consider M and N as discretizations of the partial shapes M and N , respec-
tively. We construct a bipartite graph (V, E), with edges connecting every point
x ∈ M to every point y ∈ N . The refinement module inputs per-point features
FM and FN , and updates these features via message passing on the bipartite
graph. This process employs an attention mechanism, formulated as

mϵ→i =
∑

j,(i,j)∈E

softmaxj(q
T
i kj/

√
d)vj , (4)

and the final updated value of node i is given by

x0 = x0 + xpos, xi+1 = xi + MLP([xi∥mϵ→i]), (5)

where xpos represents the positional embedding, [·∥·] denotes concatenation, and
MLP is a multilayer perceptron with ReLU activations and instance normalization.
The refined features on the shape pair are denoted as gR(FM ) and gR(FN ).

To understand this message passing process, consider a region Ω exclusive to
shape M and absent in shape N . Let FΩ denote a feature assignment function
restricted to Ω. When projecting these features onto the function basis, the
functional map equation becomes:

CφMFΩ(M) = φNFΩ(N). (6)

This equation holds true if and only if FΩ(x) = 0 implies FΩ(y) = 0 for
x ∈ M,y ∈ N . Hence, effective communication between the regions on M and
N is crucial, enabling feature synchronization over overlapping regions while
diminishing the influence of features outside these overlaps.

3.2 Feature Consensus with Functional Maps

An overview of our framework is depicted in Fig. 1. Given a pair of images M
and N , our setup includes two distinct pixel-wise feature extraction networks,
yielding two sets of features: EM , EN and FM , FN . For instance, EM and EN

might be DINOv2 features, while FM and FN could be Stable Diffusion features.
The primary objective is to derive a functional map C between the two

function spaces F(M,R) and F(N,R). The core of our method involves using
EM and EN to calculate the Laplacian eigenfunction basis and apply FM and
FN for introducing regularizations in optimizing the functional map. In essence,
our method optimizes the functional map derived from one set of features to
achieve a “consensus” with the other set, providing a more comprehensive and
robust mapping between the function spaces of the images.

Image Laplacian from visual features. For an image feature of dimensions
(h,w), where h is the height and w is the width, we view it as a grid graph
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comprising h× w nodes; each node is connected to its four adjacent neighbors.
However, a graph constructed naively would lack awareness of the image content,
and its Laplacian eigenspaces would correspond to the conventional Fourier
frequency space.

Instead, we assign weights to the graph edges based on the first set of image
features EM and EN . For two adjacent patches x and y in image M (a similar
definition applies for N), the weight of the edge between them is given by:

∥exy∥ = exp

(
−
∥EM

x − EM
y ∥

σ

)
, (7)

where σ denotes the median of all the feature values.
Next, we compute the graph Laplacian ∆M and utilize its eigenfunctions

as the basis. In alignment with previous research, we adopt a reduced function
space spanned by the first 200 eigenfunctions. To compute the Laplacian eigen
decompositions, we employ the LOBPCG algorithm, known for its efficiency.
Fig. 2 presents examples of these Laplacian eigenfunctions.

Feature as function regularizer. For the second set of features FM and FN ,
we employ them as descriptor functions and impose a constraint on C such that
CFM ≈ FN . Given the incompleteness of shape correspondences in image pairs,
due for example to occlusion within the object and by other objects, we utilize
the attention-based feature refinement network gR from deep partial functional
maps [2]. This network refines the features, which are then projected onto the
function basis:

F̃M = φMgR(FM ), F̃N = φNgR(FN ). (8)

The descriptor-preserving loss applied to these refined features is formulated as:

Lfeat = ∥CF̃M − F̃N∥2. (9)

To enhance the regularity of the functional map, our optimization objective in-
corporates two additional regularization terms. First, we integrate a compactness
regularization into the functional map matrix:

Ldiag =
(∣∣∣λM

i − λN
j

∣∣∣ cij)2 , (10)

where λM
i and λN

j represent the i-th and j-th eigenvalues of the graph Laplacian
matrices ∆M and ∆N , respectively. For images with similar spectral distributions
of eigenvalues, minimizing Ldiag encourages a near-diagonal structure in C. This
regularization is based on the principle that eigenvalues’ magnitudes are indicative
of the frequencies of their corresponding eigenfunctions, and eigenfunctions with
similar frequencies are more likely to correspond, as suggested by Huang et
al . [14].

Next, we introduce a bijectivity constraint to the functional map:

CM→N ·CN→M = I. (11)

This can be interpreted as a special instance of the cycle-consistency regularization
for image collections as in Wang et al . [52] when the number of images is two.
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To implement this constraint, in line with Wang et al . [52], we define two
sets of optimizable latent bases: ZM = {ZM

i } and ZN = {ZN
i }, corresponding

to the function spaces F(M,R) and F(N,R) of both source and target images.
The consistency loss is then defined as:

Lcons =
∥∥∥CZM − ZN

∥∥∥
2
. (12)

To prevent degenerate solutions where ZM and ZN could be trivially zero, we
introduce an additional constraint requiring both ZM and ZN to satisfy ZtZ = I.

Integrating all these components, our final optimization objective is:

argminCLfeat + λdiagLdiag + λconsLcons,

s.t. (ZM )tZM = I, (ZN )tZN = I.
(13)

Optimization. We jointly optimize the weights of the image feature refinement
network gR, the functional map C, and the latent basis ZM and ZN for the input
image pair. The full loss function is formulated as:

L = Lfeat + λdiagLdiag + λconsLcons

+ λZ

(
tr
(
(ZM )tWZM

)
+ tr

(
(ZN )tWZN

))
+ λreg

(∥∥∥(ZM )tZM − I
∥∥∥
2
+
∥∥∥(ZN )tZN − I

∥∥∥
2

)
,

(14)

where W = I+CtC. The terms tr (ZtWZ) are variations of Eq. (13) with ZM

and ZN as the primary variables rather than C, as discussed in Wang et al . [52].

4 Experiments

Dataset. We evaluate our method primarily on the TSS dataset [45], comprising
400 image pairs from three subsets: FG3DCAR [21], JODS [39], and PASCAL [12],
all of which include dense correspondence annotations. Additionally, we perform
evaluations on the SPair-71k dataset [25], which features sparse annotations of
keypoint correspondences across 18 categories. For this dataset, we sample 20
pairs from each category for our analysis, following the prior work [56].

Baselines. Our comparison primarily focuses on emergent correspondences from
various visual models and feature fusion techniques. We utilize feature extraction
networks such as DINOv1 (ViT-S/8), DINOv2 (ViT-S/14 and ViT-B/14), and
Stable Diffusion, which are prevalent and extensively researched in a wide range
of visual perception tasks. In terms of feature fusion, we benchmark against the
feature concatenation approach proposed by Zhang et al . [56], testing different
combinations of features. Additionally, we list other methods designed for image
correspondence tasks that involve stronger supervision or task-specific designs.

Evaluation metrics. For both dense and sparse correspondences, we adopt
the Percentage of Correct Keypoints (PCK) metric [54] with a threshold of
κ · max(h,w), where κ is a positive integer, and (h,w) represents the image



Zero-Shot Image Feature Consensus with Deep Functional Maps 9

Table 1: Results for dense correspondences on TSS [45]. The baselines are
classified into three categories based on their training setups: supervised, unsupervised
with task-specific designs, and zero-shot methods without task- or dataset-specific
designs. * indicates backbones fine-tuned on this dataset.

Setting Method FG3DCar JODS Pascal Avg.

Supervised
SCOT [24] 95.3 81.3 57.7 78.1
CATs∗ [7] 92.1 78.9 64.2 78.4
PWarpC-CATs∗ [50] 95.5 85.0 85.5 88.7

Unsupervised
task-specific

CNNGeo [34] 90.1 76.4 56.3 74.4
PARN [16] 89.5 75.9 71.2 78.8
GLU-Net [47] 93.2 73.3 71.1 79.2
Semantic-GLU-Net [49] 95.3 82.2 78.2 85.2

Unsupervised
zero-shot

DINOv1-ViT-S/8 [1] 68.7 44.7 36.7 52.7
DINOv2-ViT-B 81.2 68.4 51.5 69.4
Stable Diffusion (SD) 92.1 62.6 48.4 72.5
Concat. DINOv2 + SD [56] 92.9 73.8 59.6 78.7
FMap DINOv2(basis) + DINOv2(loss) 83.5 69.2 52.7 71.0
FMap SD(basis) + SD(loss) 80.0 63.4 51.5 67.8
FMap DINOv2(basis) + SD(loss) (ours) 84.8 70.4 53.5 72.2
FMap DINOv2(loss) + SD(basis) (ours) 93.1 74.0 59.9 78.9

dimensions in the TSS dataset or the instance bounding-box dimensions in the
SPair-71k dataset. Additionally, for dense correspondences on the TSS dataset, we
assess spatial coherence using a smoothness metric [56]. This involves extracting a
semantic flow (i.e., a 2D motion vector field from the source to the target image)
and computing its first-order difference. In the case of sparse correspondences on
the Spair-71k dataset, we further calculate the Mean Squared Error (MSE) on
the keypoints to quantify mapping distortions.

4.1 Dense Correspondence

Table 1 presents the results of dense correspondences on the TSS dataset. Follow-
ing [56], we majorly compare to other zero-shot unsupervised methods, among
which we achieve the best performances. Specifically, we outperform Zhang et
al . [56] with the same pair of features by utilizing the features in a more structure-
aware manner. We also list as references the performances of fully supervised
methods and unsupervised methods with task-specific training.

We also evaluate an ablated version of our framework by computing the
basis functions and losses using the same set of features (the third and fourth
rows from the last), which give significantly worse results compared to our full
model. On the other side, it can still give better results than directly using
one feature with nearest neighbor queries (for example, FMap DINOv2(basis) +
DINOv2(loss) versus DINOv2-ViT-B/14). This shows that structure-awareness
can naturally lead to better correspondences even without introducing any
additional information.

Fig. 3 shows the qualitative results of dense correspondences computed with
the DINOv2-ViT-B/14 and Stable Diffusion networks. We compare side-by-side
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Fig. 3: Dense correspondences on SPair-71k [25] Image Pairs. Each example
displays pixel-wise mappings from source to target images in rainbow colors (second
column for source coordinates, fourth and fifth columns for computed target coordinates)
and color transfers (last two columns). Specifically, we demonstrate the challenging
examples including significant viewpoint changes (first and second row), shape variations
(first and third row), and occlusions (third row). Our framework achieves more consistent
mappings with its global structure-awareness.

the feature fusion results using pre-normalized concatenation [56] and our method.
In all these examples, our framework provides smoother and more consistent
mappings with its global structure-awareness. Specifically, we highlight two
challenging examples: the airplanes in the second row with large camera-view
changes, and the birds in the third row with large shape variations as well as
occlusions. We also visualize the matrices for the linear functional maps in Fig. 6.

Feature fusion with different networks. Tab. 2 presents the accuracy and
smoothness of correspondences derived from features of various network back-
bones. When compared to using individual features or their concatenation [56], our
functional-map-based framework demonstrates superior results in both metrics
across all tested configurations.

Feature fusion with different layers. Tab. 3 presents the results of fusing
features from different layers within the same network. Our experiments involve
layers 9 and 11 of DINOv2-ViT-S/14 and DINOv2-ViT-B/14. In all tested setups,
our framework demonstrates superior performance compared to baseline methods.

Additionally, a comparative analysis was performed on the choice of layers for
DINOv2-ViT-B/14, specifically by fusing the features of layer 11 with those of
layers 8, 9, 10, and layer 11 tokens. The results, as depicted in Tab. 4, indicate that
our functional map approach consistently surpasses both raw and concatenated
features across all layer combinations. We also observed that greater feature
distinction occurs when the two layers are more distant from each other. Our
framework effectively leverages this distinction, extracting better correspondences
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Table 2: Fusing the features from different networks.

Method PCK0.05↑ PCK0.1↑ EPE↓ Smth.↓

DINOv1-ViT-S/8 raw 53.9 76.8 46.1 12.90
DINOv2-ViT-S/14 raw 69.6 85.0 30.8 7.98
DINOv2-ViT-B/14 raw 69.4 87.8 30.9 10.46
Stable Diffusion (SD) raw 72.5 83.8 37.5 6.41

DINOv1-ViT-S/8
+ DINOv2-ViT-B/14

Concat. [56] 69.9 88.1 31.0 10.33
FMap (ours) 72.2 90.3 27.7 7.95

DINOv2-ViT-S/14 + SD Concat. [56] 78.1 89.9 27.5 6.58
FMap (ours) 71.5 90.0 26.3 6.47

DINOv2-ViT-B/14 + SD Concat. [56] 78.7 90.7 26.4 6.81
FMap (ours) 78.9 91.1 26.1 5.74

Table 3: Fusing the features from different layers of the same network.

Backbone Method PCK0.05↑ PCK0.1↑ EPE↓ Smth.↓

DINOv2-ViT-S/14

Layer9 67.2 84.8 36.5 9.64
Layer11 70.8 88.1 31.0 9.25
Concat. [56] 70.5 88.1 31.0 9.25
FMap (ours) 70.8 89.1 29.1 6.60

DINOv2-ViT-B/14

Layer9 57.2 85.4 34.5 10.66
Layer11 69.4 87.8 30.9 10.46
Concat. [56] 70.0 87.9 30.9 10.24
FMap (ours) 70.6 89.8 25.9 8.27

by integrating their information. As shown in Tab. 4, optimal performance in
EPE is achieved using features from layers 8 and 11.

4.2 More Results

Keypoint correspondence. Tab. 5 presents the results for sparse keypoint
correspondences on SPair-71k [25]. Compared to feature concatenation [56], our
method demonstrates comparable or higher PCK (with different thresholds) and
exhibits lower MSE errors. Note that the selected keypoints are extremely sparse
on the images, which could potentially introduce sampling biases compared to
evaluations of dense correspondences.

Fig. 4 showcases qualitative keypoint matching results. Our method is com-
pared side-by-side with results obtained using feature concatenation, where our
approach consistently demonstrates robustness in these challenging scenarios
and effectively captures the geometric properties of the features. Fig. 4a further
illustrates the effectiveness of our method in scenarios where the target image
contains many similar points, like the legs of a horse. In contrast, the baseline
struggles to capture the global structure, often leading to mappings of similar
but incorrect points.
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Table 4: Results on different layer choices for feature fusion. This experiment
involves DINOv2-ViT-B/14, wherein its layer 11 features (values) are fused with layers
8, 9, 10, and layer 11 tokens, respectively.

Method Layer 8 Layer 9 Layer 10 Layer 11 token
EPE↓ Smth.↓ EPE↓ Smth.↓ EPE↓ Smth.↓ EPE↓ Smth.↓

Raw [1] 59.1 16.10 56.8 16.06 56.8 15.40 53.3 13.20
Concat. [56] 53.5 14.80 55.4 13.90 56.7 16.70 55.3 16.10
FMap (ours) 41.8 11.95 45.2 9.52 41.9 12.43 45.3 10.65

FMap

(ours)

Concat.

(a) Image pairs with similar geometric properties. (a) The baseline method incorrectly maps (a) the
right ear of the horse to the left ear, (b) the right ear of the cow to the left ear, and (c) a point
corresponding to the front feet of the horse to the hind feet.

FMap

(ours)

Concat.

(b) Image pairs with significant differences in shapes and viewpoints. The baseline method incorrectly
maps (a) all points on the pot to the plant, (b) a point on the child’s ear to the woman’s cheek, and
(c) a point at the seat corner to another chair’s armrest.

Fig. 4: Sparse keypoint correspondences on SPair-71k [25] image pairs. Correct
matches are connected with blue lines and incorrect matches with red lines.

Affordance transfer. We further showcase an application of our method in
transferring tool affordances between images from the RGB-D Part Affordance
Dataset [26]. This dataset features different types of affordances annotated on
each object, represented as heat maps. Fig. 5 illustrates our results in transferring
these affordance heat maps. Such distributional functions across pixels pose a
challenge to raw pixel-wise maps due to the potential distortion of their overall
structure during interpolation. However, these functions can be naturally modeled
with functional maps, as our approach demonstrates.

Ablation Studies. In addition to the feature ablations shown in Tab. 1 and
discussed in Sec. 4.1, we also present an ablation on the regularization terms
for the functional map optimization. Tab. 6 shows the results optimized with
different regularization losses. The diagonality and consistency regularizations
greatly improve the accuracy of the mapping. Fig. 6 visualizes the functional
map matrics with and without the regularizations. The near-diagonal mappings
are preferred because they match the function basis with similar frequencies.



Zero-Shot Image Feature Consensus with Deep Functional Maps 13

Table 5: Results for sparse keypoint correspondences on SPair-7k [25]. All
results in this experiment are with the DINOv2-ViT-B/14 backbone.

Method PCK@0.1↑ PCK@0.2↑ MSE↓

DINOv2 52.3 68.0 105.0
Stable Diffusion 51.2 64.1 120.5
Concat. [56] 57.2 72.2 97.2
FMap (ours) 55.3 72.6 88.0

Source Target

Hammer: (grasp, pound)

Source Target

Saw: (cut, grasp)

Source Target

Scissors: (cut, grasp)

Source Target

Shovel: (grasp, support)

Fig. 5: Transferring tool affordances represented as heat maps. We treat
affordance heat maps as functions defined on the source and the target image. By
optimizing the functional map between the source and the target, we manage to transfer
the function after applying the functional map to it directly following Eq. (1). We
employ features from DINOv2-ViT-B/14 and Stable Diffusion to compute the functional
maps in this experiment.

5 Discussions

As shown in Sec. 4.1, our functional map framework effectively integrates features
from different network layers. This integration, particularly from just two distinct
layers, outperforms the conventional approach of using same-layer features or
naively concatenating different features. This finding opens up promising avenues
for enhancing the generalization capabilities of large-scale vision models without
additional fine-tuning. Our method also aligns with the high-level principles of
the Adaptive Mixture of Local Experts (MoE) [15]. It can be seen as each “expert”
in our framework reaching a consensus on the geometric properties of features,
akin to a specialized gating network within the MoE paradigm.

Moreover, the interpretability of learned features in the functional map
framework is crucial, particularly in domains like medical imaging or autonomous
systems. Our approach, as shown in Fig. 3, enables impressive image editing
outcomes without generative models. This leads to the intriguing possibility of
combining our method with generative models to enhance image quality.

In summary, the interpretability, performance, and potential for integration
with generative models position our functional map framework as a versatile
tool in computer vision. Its ongoing exploration and application in real-world
scenarios further underscore its importance in the field of visual understanding
and synthesis.
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Source

Target

Input imageDINOv1-ViT-S/8 + 

DINOv2-ViT-B/14

DINOv2-ViT-S/14 + 

Stable Diffusion

DINOv2-ViT-B/14 + 

Stable Diffusion

DINOv2-ViT-B/14 

Layer9 + Layer11

w/. diag.+cons. 

regularizations

w/o. diag.+cons. 

regularizations

Functional map matrix (top left 50×50 submatrix)

Fig. 6: Functional map matrices with and without regularization losses.
Enforcing the compactness loss (Eq. (10)) centers the non-zero matrix entries around
the diagonals to match the function basis of similar frequencies.

Table 6: Ablation on the loss terms. All results in the experiment are with DINOv2-
ViT-B/14 and Stable Diffusion on the SPair-71k dataset.

Loss PCK@0.1↑ PCK@0.2↑ MSE↓

Lfeat (no regularization) 44.6 65.5 95.3
Lfeat + Ldiag 52.9 69.5 97.9
Lfeat + Lcons 52.8 69.7 100.3
Lfeat + Ldiag + Lcons (full loss) 55.3 72.6 88.0

6 Conclusions

The emergence of correspondences from large-scale vision models not explicitly
trained for this task is noteworthy. While nearest-neighbor analyses provide a
direct exploration, they overlook the structure inherent not only in the image
contents but also in the model features. Our work leverages this embedded
structure via functional maps, aiming to generate point-wise accurate and globally
coherent correspondences. Despite its simplicity, it significantly enhances the
matching results, both qualitatively and quantitatively, with zero-shot inference
on image pairs without additional supervision or task-specific training. While the
core concepts of our approach are rooted in 3D shape correspondence literature
from graphics [31], our implementation using deep feature-based functional maps
bridges this area with cutting-edge vision research. We believe this connection
will inspire broader possibilities in image correspondence problems.

Limitations and future work. The structure-awareness of functional maps
relies on the manifold assumption of its underlying domain, making our current
framework more suitable for object-centric images than complex scenes with
diverse compositionalities. Examples of the latter include matching a horse to
a herd of horses or matching two indoor scenes. However, this issue might be
addressed using additional image segmentation techniques that decompose the
image into objects and parts, or by exploring matches between quotient spaces.
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A Implementation Details

We implemented the image feature functional map in approximately 400 lines of
Python code, utilizing PyTorch v1.9.1 and CUDA 11.1.

Graph Laplacian construction from images. Our method employs PyG (Py-
Torch Geometric), a comprehensive library designed for deep learning on graphs.
We utilize its capabilities to refine edge weights based on feature differences and
to compute the graph’s Laplacian matrix.

Computation and resources. All experiments were carried out using the
PyTorch framework on a 64-bit machine, equipped with a single NVIDIA GeForce
RTX 3090 GPU.

Image preprocessing. For the SPair-71k dataset, we apply image cropping using
the provided bounding boxes, followed by resizing both source and target images
to a uniform scale. For the TSS dataset, which primarily features object-centric
images, such cropping is generally not necessary.

B Functional Map Details

Functional map to point-wise map. To translate the functional representa-
tion back to the original mapping, we determine a corresponding point y ∈ N
for each x ∈ M. In the Laplacian basis, the matrix ΦM represents the Lapla-
cian eigenfunctions of M, with columns and rows corresponding to points and
eigenfunctions, respectively. The image of all delta functions at M’s points is
represented by CΦM.

Function distance in spectral domain. For functions g1 and g2 on N with
spectral coefficients b1 and b2, the equation

∑
i(b1i−b2i)

2 =
∫
N
(g1(y)−g2(y))

2µ(y)
holds. This equates the coefficient vector distances to the L2 difference between
the functions.

Correspondence estimation. Establishing point correspondences effectively
involves finding the nearest neighbor in ΦN for each point in CΦM.

Descriptor preservation. For point descriptors represented by functions f and
g, our mapping aims to retain descriptor qualities. In multidimensional descriptor
scenarios, f(x) ∈ Rk for each x, we establish k constraints for scalar functions,
addressing each descriptor dimension individually.

Hyperparameters. Hyperparameters were carefully chosen, with the consistency
loss parameter (λcons) set around 1e-3. The regularization loss parameters λdiag,
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λreg, and λZ were set to 5 and 1, respectively, balancing regularization strength
and model expressiveness.

C Per-Category Results

Table A1: Per-category results on TSS (Tabs. 2 and 3, Sec. 4.1).

Method PCK@0.05↑ PCK@0.10↑ EPE↓ Smth.↓
FG3DCar JODS Pascal Avg. FG3DCar JODS Pascal Avg. FG3DCar JODS Pascal Avg. FG3DCar JODS Pascal Avg.

DINOv1-ViT-S/8 68.7 44.7 36.7 53.9 89.1 69.1 62.5 76.8 40.8 35.8 61.4 46.1 8.02 18.14 17.40 12.90
DINOv2-ViT-S/14 83.3 68.5 49.0 69.6 96.4 88.7 75.2 85.0 27.0 17.8 45.3 30.8 14.60 9.89 6.61 7.98
DINOv2-ViT-B/14 81.2 68.4 51.5 69.4 94.8 87.8 76.8 87.8 29.1 18.1 42.1 30.9 7.40 9.98 15.60 10.46
Stable Diffusion 92.1 62.6 48.4 72.5 97.5 80.1 64.7 83.8 22.1 26.5 69.1 37.5 3.49 8.98 9.31 6.41

DINOv1-ViT-S/8 + DINOv2-ViT-B/14

Concat 83.5 64.7 52.0 69.9 96.4 84.8 77.3 88.1 26.6 23.1 43.2 31.0 6.23 13.50 14.60 10.31
FMap 84.9 70.5 53.6 72.2 96.6 89.1 81.2 90.3 25.6 18.2 37.2 27.7 5.26 9.61 11.10 7.95

DINOv2-ViT-S/14 + Stable Diffusion

Concat 93.3 72.7 57.7 78.1 98.5 89.2 77.1 89.9 20.0 17.4 46.0 27.5 3.91 7.65 10.10 6.58
FMap 84.7 70.2 51.8 71.5 98.6 88.8 77.2 90.0 18.7 19.2 43.2 26.3 3.77 7.85 9.75 6.47

DINOv2-ViT-B/14 + Stable Diffusion

Concat 92.9 73.8 59.6 78.7 98.5 90.1 78.9 90.7 20.1 16.7 42.8 26.4 4.12 7.75 10.42 6.81
FMap 93.1 74.0 59.9 78.9 97.9 89.5 81.5 91.1 24.3 17.1 34.9 26.1 3.15 8.29 7.70 5.74

DINOv2-ViT-S/14 layer9 + layer11

Layer9 82.4 63.2 45.9 67.2 96.0 83.3 68.3 84.8 28.1 22.1 59.3 36.5 6.62 10.21 14.02 9.64
Layer11 83.3 68.5 51.5 69.6 96.4 88.7 76.8 85.0 27.0 17.8 42.1 30.8 6.61 9.59 15.60 7.98
Concat 74.6 67.3 51.0 70.5 86.8 86.9 75.4 88.1 59.8 18.9 46.8 31.0 12.53 9.65 13.66 9.25
FMap 84.2 68.1 51.6 70.8 96.9 87.4 77.8 89.1 25.6 18.2 41.9 29.1 5.03 8.15 8.06 6.60

DINOv2-ViT-B/14 layer9 + layer11

Layer9 60.4 64.2 47.9 57.2 94.7 84.1 71.8 85.4 29.9 21.2 50.4 34.5 7.38 10.70 15.85 10.66
Layer11 81.2 68.4 51.5 69.4 94.8 87.8 76.8 87.8 29.1 18.1 42.1 30.9 7.40 9.98 15.60 10.46
Concat 82.5 67.1 52.4 70.0 95.6 86.7 76.7 87.9 28.1 18.8 43.5 30.9 6.95 10.10 15.02 10.24
FMap 83.1 67.2 53.4 70.6 95.7 87.7 82.1 89.8 22.8 18.1 35.9 25.9 5.95 8.60 11.90 8.27

Table A2: Per-category results on SPair-71k (Tab. 5, Sec. 4.2).

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV Avg.

PCK@0.10↑

DINOv2 67.7 63.3 83.8 39.1 45.6 44.0 41.0 68.3 33.9 67.5 48.8 61.2 64.1 61.3 22.2 60.9 46.1 23.1 52.3
SD 56.5 55.0 75.0 32.2 51.9 45.3 34.3 73.4 34.8 70.6 46.3 63.7 44.7 49.6 50.8 51.3 55.7 32.1 51.2
Concat 67.7 60.8 83.8 40.2 52.2 50.7 37.3 78.9 42.5 68.9 53.9 61.3 61.2 64.6 42.9 57.4 60.0 46.4 57.2
FMap 65.3 65.0 83.8 39.1 47.5 44.0 40.3 69.4 37.4 64.4 59.2 63.1 66.0 64.7 27.0 60.0 51.3 47.4 55.3

PCK@0.20↑

DINOv2 77.7 78.3 91.9 56.3 63.9 54.7 48.5 85.4 50.4 84.1 63.4 86.0 84.5 71.4 47.6 75.7 67.8 36.3 68.0
SD 70.5 73.3 90.4 41.4 65.2 52.6 41.0 81.4 47.8 78.5 60.3 78.3 55.3 62.2 69.8 64.3 72.6 50.0 64.1
Concat 78.2 81.7 94.1 56.3 69.6 60.7 44.0 89.9 56.5 80.4 71.9 80.3 77.6 76.5 65.9 71.3 78.7 67.5 72.2
FMap 81.2 80.0 94.9 56.3 67.1 57.3 56.0 82.9 47.8 78.5 79.9 80.3 82.5 80.7 57.9 75.7 73.0 68.0 72.6

MSE↓

DINOv2 101.5 58.7 40.2 162.6 131.7 160.9 141.7 58.3 120.6 60.7 72.0 76.4 62.8 100.6 167.5 65.5 82.6 225.9 105.0
SD 122.3 77.7 57.7 225.4 132.8 178.1 158.2 70.6 128.5 74.2 109.2 86.5 144.1 111.4 118.3 110.4 77.9 186.5 120.5
Concat 98.2 64.9 39.9 155.3 110.7 156.9 150.4 47.2 105.6 65.5 78.8 94.7 85.7 84.1 143.1 94.1 64.4 111.3 97.2
FMap 88.9 54.8 37.7 162.9 116.3 153.8 123.1 57.7 93.1 70.3 60.6 96.9 66.0 74.9 114.7 68.8 73.7 103.1 88.0


