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(ii) Computation: rule-based generalization is significantly positively correlated with the subjective complexity The generalization function is given by: alizes given rules to unknown rules. Similarity shifts to rules when the sample hierarchy
of the representation, while the trend is the opposite for similarity-based generalization. goes (e.g., from "block” to "blue cylinder’,

from "cat" to "angora cat"). Rules shift to similarity as the sample hierarchy goes from
subordinate-level to superordinate-level (e.g., from "car on the road" to "car", from "dal-
matian" to "spot”). We also note a confusing similarity judgment between blue cylinder,
blue cube, and green cylinder.

Significance: We provide first pieces of evidence that people may name natural visual concepts in a rational
fashion according to the representativeness of attributes.





