Evaluating Human Cognition of Containing Relations with Physical Simulation
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Abstract

Containers are ubiquitous in daily life. By container, we con-
sider any physical object that can contain other objects, such
as bowls, bottles, baskets, trash cans, refrigerators, etc. In this
paper, we are interested in following questions: What is a con-
tainer? Will an object contain another object? How many
objects will a container hold? We study those problems by
evaluating human cognition of containers and containing rela-
tions with physical simulation. In the experiments, we analyze
human judgments with respect to results of physical simula-
tion under different scenarios. We conclude that the physical
simulation is a good approximation to the human cognition of
container and containing relations.
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Introduction

Containers are ubiquitous objects in daily life, such as
bowls, bottles, baskets, trash cans, refrigerators, etc. Contain-
ing relation is a general and fundamental relation in the scene.
Containers offer containing relations for carrying, hiding, or
ensuring the objects remain in a safe place. The contained
objects are called contents. The containing relation charac-
terizes the “affordance” that how likely a container can hold
its content.

Different from visual object recognition problems, recog-
nition of containers involves the cognitive process of com-
monsense reasoning, such as analysis of physical properties,
geometric shapes, and material properties, etc. Fig.1 shows
two examples when a container fails to contain its content:
(a) the container with holes can not contain tiny objects or
staffs, like beads, sand or water; (b) the container with a low
wall fails to contain a big ball.

Containers quantize and organize our perceptual scene
space. For example, when people are asked “where the
chilled beer is”, the answer will usually be that “it is in the re-
frigerator” without mentioning the exact 3D coordinates. By
containers, the perceptual space of 3D scene is discretized
and quantized, and objects are often organized in a hierarchy
with respect to their containing relations (Zhao & Zhu, 2013).
This quantization largely simplifies many tasks, such as plan-
ning, detection and tracking.

Inspired by (Battaglia, Hamrick, & Tenenbaum, 2013) and
(Zheng, Zhao, Yu, Ikeuchi, & Zhu, 2015), human perceive
physical scenes by making approximate and probabilistic in-
ference, and the physical engine helps us to reason about
common-sense in complex scenes. When we ask about
whether a container will hold another object, human may
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Figure 1: Two typical cases when a container fails to contain
its contents: (a) the container with holes can not contain tiny
objects; (b) the container with a low wall fails to contain a big
ball. The left figures of these two panels illustrate a stimuli
of our experiments, and the right figures illustrate simulation
results with physical engine or in human mind.

do similar mental simulations. The definition of containers
are related to physical properties of containers and contents.
In Fig.1, the container and its contents are not compatible in
these two cases. In this paper, we model and infer the contain-
ing relations between two objects by imagining what would
happen when one puts an object into a container.

In order to study containers and the factors which affect
containing relations, we collected a 3D container dataset and
carry out our experiments based on it. In the experiment, we
presented some random sampled 3D objects from our dataset
to the subjects. The subjects answered questions about con-
tainer and containing relations according to these pictures.
We also built an online physical simulation system with Unity
3D engine on a tablet platform as shown in Fig.2. The system
is used for evaluating containing relations between objects
and comparing with human judgments.

Related work

Containers in Cognitive Science. = Some experiments
(Hespos & Baillargeon, 2001; Hespos & Spelke, 2007)
showed that even young infants can understand containers. In
their first six months of life, infants knew that contents can be
occluded by containers. At the end of their first year, infants
can develop a more refined concept about container and con-
tainment. (Inhelder & Piaget, 1958) studied children’s under-
standing of the conservation and limited capacity of liquid,
matters and numbers. For example, six-year children may
confuse about what happened when the liquid in a tall skinny
container was poured into a short wide container.
Simulation. According to the Simulation Theory (ST), an
attributor arrives at a mental attribution by simulating, repli-
cating, or reproducing in his own mind the same state as the
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Figure 2: A 3D Structure Sensor attached to a tablet (left) and
a physical simulation interface (right) are used in this paper.
The interface simulates a few balls falling onto a bag.

target, or by attempting to do so. (Markman, Klein, & Suhr,
2012) reviewed the research of simulation-based models in
psychology. Some works (Goldman & Sripada, 2005) ex-
amined the simulation approach and the theorizing approach
for determining the compatibility between emotions and ex-
isting evidence. Some neuroscience research is quite related
to simulationist ideas (Chaminade, Meary, Orliaguet, & De-
cety, 2001; Gallese & Goldman, 1998; Jeannerod, 2001).
(Hamrick, Battaglia, & Tenenbaum, 2011; Battaglia et al.,
2013) studied the intuitive physics engine as a model to rea-
son stability of a tower built by blocks. They showed the sim-
ulation model matched human perceptions. Benefiting from
game engines, such as PhysX, Bullet and Unity3D, physical
simulation is widely available for game designers as an off-
the-shelf component (Kaufmann & Meyer, 2008).

In AI community, container has been studied since
1980s as a wide-accepted example for qualitative reasoning
(Williams, Hollan, & Stevens, 1983; Bredeweg & Forbus,
2003; Frank, 1996). In (Collins & Forbus, 1987), container
is used to reason liquid. They presented a technique called
molecular collection ontology to describe contained stuff. A
preliminary knowledge base for qualitative reasoning about
containers is developed in (Davis, Marcus, & Chen, 2013),
which is expressed in a sorted first-order language of time, ge-
ometry, objects, histories, and events. Those studies modeled
containers by using logic with a restriction of well-defined
task domains, and the observation is not directly obtained
from real world signal.

Experiments
3D container dataset

In the experiment, we built a 3D container dataset including
315 real-world 3D objects. The data was collected using a
3D Structure Sensor attached to a tablet platform as shown in
Fig.2 (a). The objects in our dataset are full 3D models re-
constructed by computer vision algorithms. We then conduct
our experiment with these real-world 3D objects. Some re-
sults are shown in Fig.3. Comparing with previous cognitive
studies, our experiments use daily objects in natural physical
scenes.

Participants and stimuli

We conduct human studies with fifty human subjects who are
university students around age 25. We are interested in three
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Figure 3: 3D scanned objects in our container dataset

main questions: i) What is a container? ii) Can an object
A contain another object B? iii) How many objects will a
container hold? For each of these three questions, we show
a 3D scene as a stimulus to human subjects, and ask them
to answer a corresponding question. The objects in the 3D
scenes are generated randomly from our 3D container dataset.

Physical simulation

We set up a physical simulation system with Unity 3D en-
gine to infer the probability for an object to be a container
and containing relations between two objects. We place a 3D
object as a potential container on a virtual ground, and initial-
ize another object as its potential content over the container
with a few random parameters, i.e. relative height, position,
pose, and initial speed. Initializing the 3D scene by randomly
sampling these parameters, we calculate the frequency of suc-
cessful cases of containments through physical simulations.
In the physics engine, we model the potential container by
a "Mesh Collider” which calculates the collisions for all the
triangle faces (around 17000) on the object. And we simplify
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Figure 4: Inferring containing relations by physical simulations. The left figure shows the initial status of 5 containers and
5 contents, and the right figure shows the result of the physical simulation. We simulate the scene 100 times with random
relative heights, positions, poses, and initial speeds of objects, and calculate the frequency of successful contained trials. The
result confusion matrixes of containing relations are shown on the right, where each cell represents the probability of one object
containing another. The human judgement is the average score of ten subjects, and the physical simulation is calculated by the
frequency of successful containments with different trials. The lighter the color of a cell, the higher the probability is.

the 3D model of potential content to 255 triangle faces, and
approximate its physical dynamics by a “Convex Collider”
for the consideration of computation feasibility.

Exp. 1: What is a container?

In this experiment, we let subjects see a 3D object and ask
following questions: i) is it a container? ii) is it a convex
shape? iii) does it have a hole? iv) does it have a 1id? v) is it
hollow? vi) is it deformable? vii) what kind of material is it?

The figure on the left of Fig.5 shows the distribution of six
attributes associated to these questions. For each attribute, we
plot distributions for both container and non-container. For
example, most of the containers are concave shapes, and most
of the non-containers are convex. The last material attribute
takes categorical values of “metal”, “paper-based”, “fabric”,
“wood”, “glass”, and “plastic”.

The distribution of object sizes of the dataset are also
showed on the right of Fig.5. The size of the object covers
from the hand size (a few centimeters) to the body size (a few
meters). The size distributions of containers (green dots) and
non-containers (red dots) in the dataset are very similar.

Logistic regression analysis for attributes

We analyze the contribution of different attributes to the
notion of “container” by logistic regression. We use five
binary variables: (convex, has hole, has lid, hollow, de-
formable), one categorical variable (material), and two con-
tinuous variables (height and base area) as predictors. The
algorithm aims to analyze the influence of different variables
for answering the target question “is it a container or not?”.

The results of the regression are shown in Table.1.The at-
tributes convex and hollow with low p-values are statistically
significant for discriminating the concept of containers.

Container recognition

We address the containers recognition problem as a com-
puter vision problem. We compare two algorithms: 1) classic

Table 1: Analysis of logistic regression coefficients.

Estimate | Std. Err | tStat pValue
(Intercept) | -3.1168 | 1.1114 | -2.8043 | 0.005043
convex -1.8572 | 0.2692 | -6.8999 | 5.204e-12
has hole 0.1248 | 0.3814 | 0.3274 0.7434
has lid 1.4893 | 0.4086 | 3.6449 | 0.0002675
hollow 2.2661 0.2736 | 8.2818 | 1.2132e-16
deformable | -0.7816 | 0.3067 | -2.5485 0.01082
material 0.1712 | 0.0754 | 2.2714 0.02312
height -0.8198 | 0.5969 | -1.3733 0.1697
base area 0.4308 0.2580 | 1.6702 0.09489

computer vision algorithm by pattern-recognition, 2) physical
simulation-based method as introduced before.

We used a state-of-the-art discriminative classifier based
on Hierarchical Kernel Descriptors (Bo, Lai, Ren, & Fox,
2011). In order to apply the classic computer vision method,
we project the 3D model to RGB images and depth images
from canonical views. And we use the RGB images and
RGBD images for training and testing the computer vision
algorithm. For comparison, we also test the simulation-based
method on the same testing set of 3D objects. The probabil-
ity is calculated by the expected value for containing another
objects in the dataset.

In order to evaluate the generalization ability of these algo-
rithms, we test them on three different scenarios:

1) The single category: both training and testing samples
come from the same single category, such as boxes. ii) The
mixed category: both training and testing samples come from
a collection of multiple categories. iii) The transfer category:
the training samples come from one category, such as boxes,
while the testing samples come from another category, such
as cups. The results are summarized in Table.2. It is worth
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Figure 5: The distribution of different container attributes. In the left bar plot, a pair of horizontal bars represents the distribution
of containers and non-containers for each discrete attribute; in the right scatter plot, the green and red dots illustrate the
distribution of containers and non-containers with respect to the area of the base and height of these 3D objects.
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Figure 6: The split of training / testing for container recogni-
tion. i) The single category: both training and testing samples
come from a same single category. ii) The mixed category:
both training and testing samples come from a collection of
multiple categories. iii) The transfer category: the training
samples come from one category, while the testing samples
come from another category. The results show in Table.2.

noting that the (Bo et al., 2011)’s algorithm works well on
single category. Because the simulation-based algorithm does
not need any training, and the physical laws are generally ap-
plicable, physical simulation-based algorithm has advantages
for generalizing across categories.

Exp. 2: Will an object contain another?

In the experiment, we evaluate the “affordance” of a con-
tainer. Human subjects are shown a 3D scene with two 3D
objects randomly sampled from the dataset. One is a poten-
tial container, another is a potential content. Some of stimuli
are shown in Fig.9.

We applied two kinds of approaches to model the contain-
ing relations between two objects. i) Regression model. We
use features including relative height ratio, base area ratio,
and volume ratio, to learn a logistic regression model. ii)

Table 2: Accuracy of container recognition

RGB | RGB-Depth | Simulation
single category 0.89 0.94 0.93
mixed categories | 0.70 0.78 0.93
transfer category | 0.35 0.59 0.93

Physical simulation model. We compare the results of both
models with respect to human judgments in Fig.7 (a,b). And
we also show the correlations between two human subjects on
the right of Fig.7. We can see that this task is very challeng-
ing, as there are diverse judgments even between human sub-
jects. Although the regression method can capture some cor-
relation between the relative size and the containing relation,
the results of simulation model show much strong collinearity
with the human subject. The area between two blue lines are
the variance interval between 25% percentile and 75% per-
centile, which means a half of the samples will fall into the
region between two blue lines. Each point in the graph is a
stimulus in the Fig.9. We can not handle the last two challeng-
ing cases in current framework. Both containers acquire hu-
man intervention to open containers and put in objects, which
can not be modeled solely by the rigid-body dynamics.

Exp. 3: How many objects will a container hold?

In this experiment, the stimuli are the same as Exp.2’s. The
subjects are shown two random 3D objects and ask “how
many objects will a container hold?” The qualitative results
and quantitative results are shown in Fig.8 and Fig.10. Sim-
ilarly, the simulation results are more consistent with human
judgments than the regression model. Although the results
exhibit a large variation, similar variations are also existed
among judgments from different subjects.
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Figure 7: Will an object contain another? The left and middle figures show predictions of the regression model and the
simulation model with respect to the human judgments. The right figure shows the human judgments of two different subjects.
Each data point represents a stimulus with a pair of objects in Fig.9. The lower blue line, red line, and upper blue line outline
the first quartile (25th percentile), second quartile (median), and third quartile (75th percentile) of the distribution respectively.
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Figure 8: How many objects will a container hold? The left and middle figures show predictions of the regression model and the
simulation model with respect to the human judgments. The right figure shows the human judgments of two different subjects.
Each data point represents a stimulus with a pair of objects in Fig.10. The lower blue line, red line, and upper blue line outline

the first quartile (25th percentile), second quartile (median), and third quartile (75th percentile) respectively.

Conclusions

In this paper, we study a special category of objects “con-
tainer”. We collected a dataset of 315 real-world 3D mod-
els including containers and other daily objects. We built a
physical simulation system using Unity 3D to infer the “af-
fordance” of containers and containing relations between ob-
jects. In the experiment, compared with using regression
model of geometric features, the results by physical simu-
lation have stronger correlations with human judgments. We
conclude that the physical simulation is a good approximation
of human cognition of container and containing relations.

The physical model of the 3D scene quantitatively encodes
a large number of static and dynamic variables needed to
capture the interactions among objects. These variables in-
clude scene configurations, object geometries, masses, mate-
rial properties, rigidity, fragileness, frictions, collisions, etc.
We take advantages of the state-of-the-art 3D scanning tech-
nique, which enables us to analyze real-world 3D objects in
a physical realistic environment. Although the rigid body dy-
namics can not exactly follows the real-world motions and
parameters, the results are sufficient appealing and promising
as a start point for understanding containers.
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